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ABSTRACT 

This project investigates the use of single-chip microprocessors as nodes in a token 
ring control network and explores the implementation of a protocol to manage 
communication across such a network. 

A control network is useful when the event to be controlled is located at some 
distance from the inputs required to control it; likewise, a control network is useful when 
an application receives inputs from more sources than a single microprocessor is capable 
of handling. Such a network allows nodes to share only the information that is essential 
for each to perform eliminating the need for a powerful and costly computer. This makes 
it extremely effective in a wide variety of applications ranging from missiles to home 
security systems to "smart'" automobiles. One type of control network is the token ring 
network, where each node is connected serially with the node immediately following it and 
the one preceding it. Its efficiency, simplicity, and determinacy make it an excellent choice 
in a small control network. 

A specific scenario is examined where the position of a marble along a motor- 
driven track is controlled using inputs from a user operating a PC as well as a 
microcomputer-driven interface module, an optical encoder mounted on the motor, and a 
camera located above the track. Using the information of the state variables as well as 
preferences of the user, a digital control system is developed to move the marble to the 
proper position. 
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1. Problem Statement 

The purpose of this project is to create a serial network of microprocessors 
capable of performing control operations using sensors from remote locations. This 
network will be involved in controlling the position of a spherical marble along a tilting 
beam driven by a DC motor. The desired position of the ball can be specified by the user 
using some manner of input, and the actual position will be determined using image data 
from an analog camera. A microprocessor responsible for controlling the motor will 
operate using a control law also specified by the user. This will require that one node in 
the network be a PC on which the user may test his control law before applying it. 

There is a need for a protocol designed with the control network in mind, ready to 
handle frequent bursts of data. A major goal in this project is to explore a common 
protocol whereby any number of single-chip microprocessors may communicate with one 
another, making the project more universal in scope. This protocol should make h easy to 
add or remove nodes anywhere in the network as different sensor output stations are 
needed.  The number of microprocessors in the network will vary according to the 
requirement of the specific problem at hand. This number will grow as the project grows 
in scope and complexity. The exact number of nodes is not important, but it must be a 
number great enough to test the network's capabilities of communication. 

An important issue in the project is to make certain that each microprocessor is 
able to continue with its assigned task even as it receives data from other nodes in the 
network. The purpose of this project is not only to create a message protocol but to 
allow microprocessors to perform useful work and still participate in this network.  In all 
of the microprocessors, it takes some time to receive and process an incoming message 
and prepare and transmit an outgoing one. The critical issue is what a microprocessor is 
to do if it is about to perform an important function and receives an incoming message. 
For example, the microprocessor responsible for monitoring the position of the ball will 
take position data at a periodic rate and may be forced to miss a pass if it is processing 
information from the network. Perhaps it is acceptable to miss a pass and use the data 
obtained on the last pass, or perhaps it is not. This issue must be dealt with for each of the 
microprocessors in the network. 

The specific problem to test the ability of this network protocol is the position 
control of a ball which moves along a tilting track. Figure 1.1 shows the track and ball 
combination with the two position states, x and 6, labeled. The user can specify a desired 
position either through the use of a personal computer or through the turning of a shaft 
with a shaft encoder attached. By using position and velocity data of the ball from a 
camera positioned above the track and angular position and velocity data from a shaft 
encoder attached to the motor, a control law using state feedback will be designed to 
achieve proper response from the motor in order to balance the ball at the desired 
position. 

Four nodes will interact in this network: three single-chip Peripheral Interface 
Controller (PIC) microprocessors and one personal computer (PC). The PC will allow the 
user to view information on a monitor as well as to update the desired position of the ball 
or change the control law that the problem is following. One PIC will be dedicated to 
controlling the motor which turns the track. A second PIC monitors data from the 
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Figure 1.1.   Diagram of Mechanical System 



2. Backsround 

2.1     Networking 

A computer network is a system consisting of two or more individual stations, or 
nodes, configured in such a way as to allow data to be exchanged between the nodes. 
This information sharing is governed by a network protocol, a set of rules which govern 
all facets of the communication — it "defines connectors, cables, signals, data formats, 
and error-checking techniques as well as algorithms for network interfaces and nodes, 
allowing for standard — to within a network — principles of message preparation, 
transfer, and analysis on different levels of detail" [1]. 

The choice of a protocol for a particular network involves many factors, which will 
be discussed later. In general, there are two different kinds of networks: centralized 
networks and decentralized (or distributed) networks.  Centralized networks contain a 
master node, which governs all traffic on the network. Typically each of the other nodes, 
termed slaves, can communicate only with the master node and not among themselves. 
The master node is often a much more powerful processor than the slave nodes because it 
is responsible for performing most of the work.  In a distributed network, on the other 
hand, each of the nodes has the same right to use the network as any other node.  The 
processors used in each node are usually very similar in power, as each node is responsible 
for performing a relatively equal amount of work. 

A comparison between centralized networks and distributed networks reveals 
advantages and disadvantages of each. The protocol for centralized networks is usually 
much simpler than the one for distributed networks [1]. On the other hand, the response 
times of distributed networks are typically faster because each node can communicate 
directly with the other nodes instead of passing all information through a master node. 
Distributed systems also allow each function to be performed by a processor which has the 
necessary capabilities for that specific function instead of a single complex computer 
performing all operations, thus avoidine unnecessary complexity for simpler operations 
[2]. 

A network can also be categorized according to the geographical distribution of its 
nodes. A wide area network, or WAN, spans great distances and may contain nodes 
scattered across a country or a continent. A local area network, or LAN, on the other 
hand, is a network in which there is a much shorter distance between each node, often on 
the order of several kilometers. Before the 1970's most LANs used as data networks 
were centralized systems. Since then many different distributed network protocols have 
been introduced, such as Xerox's Ethernet, Datapoint's Arcnet, and IBM's Token Ring 

[I]. 
LANs may further be divided into two very distinct categories according to the 

type of operation the network is to perform. These categories are data networks and 
control networks. A data network is what is often pictured when the term network is 
mentioned-several PC's sharing files in an office via a central server, for example. This 
type of network differs drastically from the network that is useful to systems engineers — 



the control network. In general data networks send large packets of data infrequently, 
and require a high data transmission rate when sending these data. Control networks, on 
the other hand, receive huge bursts of data packets, dubbed 'ordered traffic' [3]. These 
bursts occur very frequently and are very short in length, usually less than 20 bytes. A 
control network must operate with nodes which are performing time-critical functions and 
cannot pause indiscriminately for data reception or transmission. 

The networks mentioned above-Arcnet, Ethernet, and Token Ring-were all 
introduced for use in data networks, but similar frameworks have also been used in control 
networks. There are several factors to consider in detennining the framework to use in a 
control network. These factors include interoperability, efficiency, determinacy, 
robustness, and cost per node. 

Interoperability refers to the ability of the network to perform when not all nodes 
or connections are alike. "The network protocol must be open. Its availability to anyone 
on equal terms is crucial to the ability of products from different manufacturers to work 
together on the network" [3]. This requires an acceptance of a standard protocol by the 
manufacturers. A second issue of interoperability is the need to work in varied operating 
environments with mixed media access. 'Tor example, portions of a system may require 
expensive fiber in noisy environments, while other portions can tolerate low-cost twisted 
pair wires in benign environments" [4]. 

The protocol efficiency of a control network refers to the ratio of the number of 
message bits delivered compared to the total bandwidth of the network.  Since only some 
of the bits in the message are data bits and the others are overhead bits used for message 
routing and other network tasks, an obvious way to optimize efficiency is to reduce the 
number of overhead bits required to send a constant number of data bits. Efficiency is also 
a function of packet size since the overhead is often a fixed length. For example, a thirty- 
two bit message may contain only eight bits of data and twenty-four bits containing node 
address and protocol instructions. Protocol efficiency is generally divided into two 
categories: heavy traffic efficiency and light traffic efficiency. As will be seen, some 
protocols work well in one but not the other. 

A third property of a control network that demands attention is determinacy. 
"Determinacy, or the ability to calculate worst-case response time, is important for 
meeting the real time constraints of many embedded control applications" [4]. Most 
systems contain some sort of prioritization scheme where nodes that control tasks 
requiring immediate execution may take temporary control of the network to send their 
traffic. Determinacy is extremely important so that a network architect will know whether 
a likelihood exists for the entire network to freeze as a result of multiple nodes attempting 
to gain access to it. 

Many network applications require robust operation in order for success. A 
network is robust if it can respond easily to unforeseen and unwanted changes in the 
network such as an added node, deleted node, or lost token, for example.  It is also 
desirable for a network to be able to respond quickly in the event that a power surge or 
glitch causes a reset. 

Finally, the cost per node is one of the paramount considerations in network 
design. Different topologies and protocols require differing amounts of hardware and 
software resources depending on the simplicity or complexity of the protocol. For cost- 



sensitive high volume applications a simpler protocol is often desirable; a more complex 
protocol is useful when application growth is expected [4]. 

It was mentioned above that no definite standards for control networks have yet 
been introduced. However, there has been experimentation in several broad areas 
including polling, time division multiple access (TDMA), token ring, token bus, binary 
countdown, carrier sense multiple access with collision detection (CSMA/CD) and carrier 
sense multiple access with collision avoidance (CSMA/CA). These seven protocols each 
have advantages and disadvantages according to the application of the network [4]. 

Polling is a popular method for control networks because of its simplicity and 
determinacy. One processor (node) typically polls each of the other processors in turn to 
determine if they have traffic to send and then gives them permission to do so. This is 
ideal for applications with centralized data acquisition where prioritization and node-to 
node communication is not required. Polling, however, requires a large amount of 
network bandwidth due to its two way communications and is therefore unacceptable for 
high speed applications [4]. 

The TDMA protocol is used extensively in aerospace operations.  Similar to 
polling, a TDMA network functions by a master node sending a synchronization signal to 
each of the other nodes so they are in essence running on the same clock. Each node is 
then assigned a time slice when it may transmit. TDMA uses much less bandwidth than 
polling, but node costs are increased because each node requires a stable clock for 
synchronization. An additional disadvantage is the need for fixed-time transmissions so 
the nodes do not exceed their allotted time [4]. 

A token ring network consists of nodes connected to one another in a ring shape. 
There is no common bus in the token ring protocol; each node is connected only to two 
other nodes. A token message is sent from node to node around the ring until a node has 
something to send. This node then replaces the token with its message which is 
transferred from node to node until it reaches its destination. The determinacy of this 
protocol is very good since worst-case token passing time can easily be calculated. 
Throughput efficiency during both heavy and light traffic situations is very good since idle 
token passing decreases as traffic increases. Looking to the future, the token ring 
network's point-to-point connections adapt easily to the growing field of fiberoptics. One 
important disadvantage is that a failure of any one node in the network may cause the 
entire network to crash. This may create problems that are more difficult to detect than 
when one node on a common bus is malfunctioning [4]. 

A token bus network is very similar to a token ring network in that a token is 
passed from node to node in a virtual ring. The nodes are actually connected by a 
common bus so each message is sent to all the nodes before the next message is sent. This 
requires a great deal more time than the process of direct token passing in a token ring 
network. It is superior in that if one node fails the network may still function [4]. 

In the binary countdown protocol, each node waits for a clear channel before 
transmitting. Each node is assigned a certain binary number corresponding to the priority 
of the traffic it sends. When h transmits, the node first sends this information on the bus. 
Two nodes attempting to transmit at the same time resolve their conflict by sending out 
one bit at a time of their assigned number to determine which message has priority. 
Typically, a binary 1 indicates a higher priority than a binary 0. For example, imagine 



three nodes with priorities 110, 111, and 010 attempting to transmit at the same time 
They each transmit their first bit, and the network sees that two are transmitting 1 's so it 
locks out the 010 node because its traffic has a lower priority. It then continues checkino 
the bits of the remaining nodes until it reaches a point where all nodes are locked out but" 

°ue,^$ VTOtoco^ also caUed ^ bit dominance protocol, is used infrequently because of 
the difficulty in adding new nodes and the required complexity of the connections [4]. 

The CSMA/CD protocol allows an almost unlimited number of nodes connected 
on a common bus. New nodes may be added or deleted without new initialization   Each 
node simply sends a message across the bus when it needs to. If two nodes attempt to 
transmit at the same time a collision occurs. Analog circuitry detects this collision and 
each node transmits its data again after a period of time. This protocol is very inefficient 
under heavy traffic conditions, and its determinacy is very poor since multiple collisions 
may keep occurring, effectively freezing the network. Ethernet, the popular data network 
protocol is based on this protocol. Very similar is the CSMA/CA protocol which 
combines facets of the CSMA/CD and TDMA protocols [4]. 

2.2     Serial Communication 

Whatever protocol is used in the network, there must also be a standard for 
communication of information between the nodes. Fortunatelv. there are several 
standards to which most existing applications adhere. There are stilL however choices to 
be made when dealing with intercomputer communications. 

There are two different methods by which one can communicate information   The 
ürst is called parallel communication. In parallel communication, whole words of 
information are sent at one time from one computer to another. A computer word is 
usually 8 or 16 bits long so two computers would need 8 or 16 connections for one to 
transmit a word in parallel.  Serial transmission, on the other hand, sends out one bit of 
information at a time instead of one byte at a time. Therefore, oniv one data path is 
required between nodes. There are several advantages and disadvantages to both   Parallel 
communication is much faster than serial communication since information is essentially 
moving eight times as fast. There is a price for this speed increase, however   Eight times 
as many connections are required between computers. This can become bulky and very 
costly especially in a noisy environment where a quality medium such as fiber'optic cable 
is used. In general parallel communication is reserved for short paths such as nodes in the 
same room whereas serial communication is more practical for longer distances such as 
those between nodes in a typical control network. 

The problem with transmitting information serially is that since there is only one 
data path for information to travel a large number of bits must travel along the same wire 
at different times. This results in a problem if the receiving node misses one or more of 
the bits in the transmission process and then decodes the message incorrectly   On a 
broader note, the receiving node must know when the first bit of the message is going to 
be sent. The communications interface can accomplish this in two ways   First the 
processors can agree that the transmission will occur at a specific time, every millisecond 
lor example. This requires that one of the processors, termed a master node provide a 
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clock signal to the slave node and send or receive data on the rising or falling edges of this 
clock. This is called synchronous transmission. The other way for the receiving node to 
know data is coming is for the transmitting node to send a start bit immediately prior to 
sending data. The processors here do not necessarily need to be running at the same clock 
speed, but must be capable of operating at a common speed (i.e., at the lower of the two). 
This is known as asynchronous transmission. Because of the fewer connecting wires that 
it requires, asynchronous transmission is more practical over long distances, and therefore 
more widely used in network applications. 

As mentioned, asynchronous serial transmission works by one processor signaling 
another with a start bit that it is going to begin transmitting. This start bit is typically a 
low state. The other processor, which knows how fast the information is coming and how 
many bits of data are coming at a time (usually eight), reads each bit. After all of the data 
bits are transmitted, the transmitting processor sends a stop bit of opposite state as the 
stan bit to let the receiver know the transmission is complete. This stop bit lasts for an 
indefinite period, with a minimum time specification to allow the receiving computer time 
to store data before the next byte arrives. These ten or so bits of information-the start bit. 
data bits, and stop bit-are known as a frame [5]. A typical frame is shown in Figure 2.1 
below. 

8-bit character 

stop bit stop bit 

start bit 

Figure 2.1.   A Sample Frame 

If the start bit or stop bit are not received correctly, a framing error occurs. The 
receiver throws out the entire character because it could not be sure it received the right 
data. This may not be the end of the problem, however. If a start bit is received 
incorrectly as a high instead of low, the first bit of data that is low will be assumed to be 
the start bit and the wrong character will be sent. This usually happens if a glitch on the 
line generates a false start. If the bit after the stop bit is also high, the receiver will think 
this data is valid and accept it. This is known as a synchronization error. 

There are many other errors that can occur as a result of garbled transmissions. If 
one of the data bits is not transmitted properly, the receiver will simply receive one bad 
character. This is known as a single bit error. One way to catch this error is by 
performing a character parity check [5]. In a parity check, a parity bit is transmitted 
immediately after the data bits and tells whether there were an even or odd number of Ts 
in the data. The receiver looks at the data and calculates this value also and then 
compares its result with the parity bit. This is one of the simplest error checking 
protocols, but also one of the most commonly used. A single parity bit will detect an odd 
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number of bit errors, but cannot determine which bits were in error. It is often called a 
"single-error" detecting scheme. It is impossible to detect all possible sources of error, 
but it is important to realize that any communication error may result in a momentary or 
total failure of the control network. 

2.3     DC Motors 

A DC motor is a device that converts electrical energy to mechanical energy by 
current flowing through a magnetic field. A model of a DC motor is shown below in 
Figure 2.2. The components La and R,, represent the inductance and resistance of the 
armature, respectively. 

Vin Vb 

Figure 2.2.   A Model of a D.C. Motor 

As the applied voltage Vm increases, the current that flows through the armature 
increases as well. Since a direct relationship exists between the armature current and the 
output torque of the motor, this will cause an increase in motor velocity as well.   This is 
typically how a DC motor is controlled — by varying the voltage applied to its armature. 
This may be done with a transistor or rheostat. The problem with this is when the 
transistor operates in its linear region.  If the motor is to run at half the applied power, the 
other half of the power must be dropped across the transistor and therefore wasted [6]. 

A better way to control the voltage applied to a DC motor is by using the 
transistor merely as a switch and sending a pulsewidth modulation (PWM) signal. The 
PWM signal can be varied in duty cycle to send a fraction of the power to the motor 
without wasting any power.  Instead of half the power being sent to the motor and half 
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dissipated across the transistor, the full power of the battery is sent to the motor for half 
the time. 

The theory behind the PWM signal is the Fourier Transform By analyzing a train 
of pulses with frequency f = fo, we obtain the frequency domain spectra shown in Figure 
2.3 (a). As can be seen, the signal contains a DC value (which happens to be equal to the 
average value of the function) and discrete values at whole number multiples of the 
frequency of the pulse train. A motor acts as a first order low pass filter (shown in Figure 
2.3 (b) below) and removes any frequencies higher than its cutoff frequency, £. What is 
left, assuming fi is greater than £, is a single DC value equal to the average value of the 
pulse train. The inverse Fourier Transform of this is simply a step function of height equal 
to the DC value. This step function then drives the motor as if a constant voltage equal to 
the value of the step function were applied directly. 

Pulse Frequency Spectrum Motor Frequency Response 

/N 

Voltage 

DCValue 

Gain (DB) 

fo        2fo      3fo       4fo 

frequency 

■> 

frequency 

(a) (b) 

Figure 2.3.   Frequency Spectra of PWM Signal and Motor Response 

An equally important consideration as controlling the speed of the motor is 
controlling its direction. This involves four switching devices set up in an H-bridge 
configuration, with two being turned on at any one time. Fortunately there exists several 
H-bridge motor drivers with this circuitry built in. All of these drivers are fairly similar in 
terms of the signals required to control them Each requires a power source (usually 12- 
24 V) and ground as well as a Phase and Enable signal. The phase signal tells the motor 
driver which direction the motor will turn, and the enable signal allows the power signal to 
be connected to the motor armature, i.e., enables the motor to run. 

There are two ways to drive a motor in this fashion. The first, called the 
sign/magnitude mode uses the Phase bit to determine direction and the Enable bit to 
determine speed.  In this mode, the PWM signal is sent to the Enable bit. The duty cycle 
of the PWM signal determines the DC value sent to the motor. It can vary over its full 



12 

resolution, controlling the speed from full on (100% duty cycle) to full off (0% duty 
cycle). The motor is thus only turned on as needed [6]. 

The alternate mode is the Locked Antiphase. In this mode, the Enable signal is left 
at high-the motor is "full on." What is varied using PWM is the Phase or direction signal 
A PWM input of 50% duty cycle will enable the motor half the time in each direction at 
full speed, thereby canceling one another. Any PWM duty cycle greater that 50% will 
cause the motor to turn in the positive direction, with 100% dutycycle causing the motor 
to actually turn at full speed in the positive direction. The same is true for thenesative 
direction in the lower half of the PWM values. The advantage of this method is that full 
torque always exists on the motor. This allows the motor to respond quickly to a chanse 
in commanded velocity. The disadvantage is that this method has only half the resolution 
of the sign/magnitude mode since the duty cycle ranges only 50% from full off to full on. 
Also, greater power consumption results because current is always flowing, even when the 
motor is stopped. The reason for this effect is that the Enable bit is always set. This 
effectively sends no information to the motor driver, where before, the setting or clearing 
of the Enable bit determined the speed of the motor [6]. 

2.4     Microcontrollers 

For embedded applications there are several choices of microprocessors for use 
but they can essentially be divided into two groups: 1) microprocessors from makers such 
as Intel or Motorola, which are adapted by third parry vendors for use in embedded 
applications and 2) dedicated microcontrollers which are not capable of running an entire 
PC The real division between a microprocessor and a microcontroller is that the former 
requires external RAM and ROM to be added while the latter already possesses required 
memory on a single chip. Each has its own advantages and disadvantages. 

The Intel 80x86 family of microprocessors is the same line which make up the 
heart of most personal computers in the world. These are very powerful and can often be 
run at clock speeds exceeding 100 MHz. They also possess, in their embedded mode, 
capability to perform many of the same functions as when thev run a PC. For example 
many include connections for a floppy disk or VGA display. Another advantage is that 
familiar compilers that run on PC's will compile programs for these embedde<fprocessors 
as well. This often saves the user from having to learn another language for his embedded 
applications. The main disadvantage of such chips is the high cost." Most are in the range 
of $400 to $600. For a multi-node network, this can quickly make a project unfeasible " 
The boards on which the Intel or Motorola dedicated chips come are also very bulky in 
size. This is because the Intel chip itself is only a microprocessor and needs supporting 
chips such as AT» converters and display adapters. Finally, it is difficult to exploit thefull 
potential of an Intel computer in embedded applications. This often makes the high cost 
not very worthwhile. 

Compared to the Intel line of microprocessors, dedicated microcontrollers seem at 
first severely lacking in power. Their maximum clock speeds usually do not exceed 25 
MHz. This is a bit misleading, however. With careful assembly language programming, 
they can often run the same operations as a more powerful computer infeweHnstructions. 
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Most are also typically smaller than comparable Intel-based microcontrollers, with the 
smallest taking up no more space than a single chip. This makes these dedicated 
microcontrollers much more desirable for space-conscious applications. They also 
typically cost less than one tenth the amount of Intel microprocessors, making them a 
eood choice for applications requiring many nodes. 

At this time, one of the best of these microcontrollers is the Peripheral Interface 
Controller (PIC) family of microcontrollers. The PIC16Cxx series is representative of a 
new breed of microcontroller. These particular devices are 18- to 40-pin chips and require 
only one external crystal oscillator to become fully functioning computers. The RISC 
(Reduced Instruction Set Computer) architecture contains only 35 single-word 
instructions, each of which executes in one clock cycle (except the branching instructions 
such as "goto" and "call" which require two cycles). The speed and simplicity of this 
design makes these processors ideal for high-speed control applications. In addition, this 
particular family of processors includes several varieties which have onboard analog-to- 
dieital (A/D) capability, thus further increasing their usefulness in the control field. Often, 
control problems require that analog data be collected and control actions be based upon 
such data. The PIC16C71 and PIC16C74 are ideal for such applications. Each has a 
single A/D unit which is multiplexed to multiple pins on the chip, thus allowing sequential 
reading of four or eight analog values, respectively. The PIC16C71 operates on a 16 
MHz clock frequency, executing each instruction in 250 ns and is capable of A/D 
conversions at the rate of 30 kHz. The PIC16C74 operates at 20 MHz and has an A/D 
converter which can perform 62.500 conversions per second (16 us each) [7]. These 
processors range in price from approximately S10 to S50 and are the processors chosen 
for this research. 

2.5     Image Processing 

An image is defined as a "two-dimensional light intensity function ./(xvvX where x 
and v denote spatial coordinates and the value of/at any point (x.,v) is proportional to the 
brightness (or gray level) of the image at that point" [8].  Images are analog in nature; the 
brightness/may take on any value at any point and the difference between the values at 
different points may be infinitely small. To make image data useful to computers, an 
image must be discretized or digitized so that information about the brightness at any 
point can be communicated digitally to the computer. The result of this operation is 
known as a digital image. 

A digital image processor is the core of an image processing system and contains 
componentsüiat perform four basic functions-image acquisition, storage, low-level 
processing, and display. The module responsible for acquiring and digitizing the image is 
known as~a frame grabber, so named because modern image processors are capable of 
digitizing a TV image in one frame time [9]. The image data are then stored in memory 
called a frame buffer. From here a processing module performs low level arithmetic and 
logic operations on the image before it is sent to the display device. 

A digitizer divides the two dimensional image into an array of pixels, thereby 
discretizing the number of possible coordinates x and>>. Each digital coordinate is known 
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as a pixel. In order to speed calculations, the array is often square with the number of 
rows and columns being a power of two, for example 512X512 pixels. The image is 
further discretized in the number of brightness levels allowed each pixel. This also 
typically is a power of two. A binary image is a digital image with only two brightness 
levels-0 and 1. With the smallest amount of information per pixeL a binary image is the 
simplest, yet lowest clarity digital image. It is essentially a black and white image, with no 
other gray levels. A 256 gray level image, on the other hand, contains much more 
information per pixel and is therefore much clearer. It however requires more storage and 
communication time to make use of this data. 

The image on which a frame grabber operates is the output of a camera. Both 
VIDICON and Charged Coupled Device (CCD) are common, with the latter being 
preferred due to size and weight. The camera is capable of sending analog information 
out one wire at speeds sufficient to display without flickering. The information is sent line 
by line with all the odd lines being sent and then all the even lines following. This is 
known as interlaced scanning [10]. Between each line a 0-V horizontal sync pulse is sent 
to let the image processor know a new line is coming. After a complete picture has been 
scanned, a longer vertical sync pulse is sent to indicate the completion of a frame. 
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3. Dynamics and Control 

In order for a control system to be developed for the specific application, a 
complex study of the physical system is necessary. There are several ways of doing this. 
For example, the motor may be given a step input and have its output measured. This 
might give a fairly accurate system model. A different approach is to obtain a mode by 
modeling the dynamics of the system itself However, because this system is highly 
nonlinear, this may prove problematic. 

One solution to the trouble of modeling nonlinear equations is to make use of 
Lagrange's method, which uses the concept of potential and kinetic energy instead of 
forces. Because of the amount of mathematical calculations required by this method, it is 
convenient to use a computer to find the solution. In Appendix Al, a MATLAB program 
for calculating the system dynamics is shown. By applying Lagrange's method to the 
system at hand, assuming the marble rolls without slipping and the angular velocity of the 
track has a negligible effect on the velocity of the marble, the following system of 
equations is obtained. 

-Bx.x = 11 5m\'x - m\x6z - m\g cos((9) (3.1) 

l.-Bo6=2m\x'Qx + (rmx2 +1 / 2m; L2)G - tmgx -cos(0) (3.2) 

where: 
m\ = mass of ball 
mi = mass of beam 
Bi = linear damping coefficient of ball 
Be = angular damping coefficient of beam 
lm = motor torque 
x - linear position of ball 
x = linear velocity of ball 
x = linear acceleration of ball 
6 = angular position of beam 

8 = angular velocity of beam 

0 = angular acceleration of beam 

As can be seen, these equations are both nonlinear, which makes them very 
difficult to use in any attempt to develop a control solution. The equations can, however, 
be linearized. By examining values that the state variables are most likely to take, 
approximations can be made which will allow for four linear state equations which are an 
accurate model for the nonlinear system In order to linearize the system, the amount of 
accuracy is determined by how many values the state variables are allowed to take. For 
example, one linearization would assume 9 « 0, for the purposes of simplification since 
the track is not expected to turn at great angles. This would allow changes to be made to 
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the above equations that remove nonlinearities (for example, the cos(#) in (3.1) becomes a 
constant value of 1. Another, more complex linearization algorithm might have several 
values that the state variables may take on and use a lookup table for each value. 
Whatever system is being used, it is important to note that if the actual variables take on 
values too different from the assumptions, the whole linear model becomes useless. 

For this specific problem, both position and angular position variables are 
linearized about 0. This is legitimate since, as mentioned earlier, the track should not turn 
at a great angle. Also, the position will never be more than .5 meter in either direction 
since the beam is only one meter long. A few other assumptions must be made in order to 
completely linearize the system Since angular velocity is expected to be rather small any 
term with 62 is assumed to be zero as well. By making these assumptions, a linear state 
matrix can be created. This matrix is shown in (3.3). 
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Once a state matrix is formed, a control solution can be begun using MATLAB. 
The simplest way to accomplish this is by using an integral plus gain state feedback design. 
A model of this design is given below, in Figure 3.1 

desired position output position 

Figure 3.1.   State Feedback Integral Design 
The integrator will assure that the error goes to zero even if there are variations 

between the actual system and the modeled system. Appendix C shows a MATLAB 
program written to perform this function. By adjusting only one line in the program a set 
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of desired poles can be chosen. Changing these poles should change the step response of 
the system Since no overshoot at all is acceptable in the case when the marble is directed 
to move near the end of the beam (if any overshoot existed, the marble would fall off the 
track), poles near the origin are chosen initially. The program has the capability to allow 
the user to print these gains in a binary file which may be used as a source of input data to 
the PC running in the network. This will allow the user to change the poles using 
MATLAB and witness immediately the effect of the new gains on system response. 

In order to test both the accuracy of the linear model as well as the effectiveness of 
the pole placement on step response, it is necessary to simulate the actual system. This is 
accomplished using Simulink, a program which runs from within MATLAB that can 
accept data from MATLAB. Here, the actual nonlinear system is simulated according to 
the equations obtained using Lagrange's method. At the same time, the linear model was 
simulated, and the same input was applied to both systems. The results of this are shown 
in Figure 3.2. where the response to both the linear and nonlinear systems are plotted on 
the same graph. 

The approximated linear response is very similar to the expected actual response 
from the system This means that the assumptions made when linearizing the system were 
good ones. The responses are also acceptable in terms of overshoot and settling time. 
This indicates that the poles selected were also a good choice. The required input torque 
can also be plotted using the data from Simulink and MATLAB.  Figure 3.3 shows the 
torque of the motor in both the linear approximation and nonlinear model. Again, there is 
a veiy good relationship between the two. What remains to be seen is whether the motor 
is capable of exerting this much torque. 

If different poles are chosen by the user, the position graphs began to differ. For 
example, if the poles are moved to speed the peak time up, two things happen. First, the 
overshoot reaches an unacceptable level (this is expected). What is not expected is the 
much larger difference between the modeled response and actual response.  This indicates 
that the system was forced past the point where the linearization assumptions were valid. 
If the user really wanted to make use of this pole placement, the entire linear model would 
need to be changed. Fortunately, the desired response from Figure 3.2 remains within 
these parameters. These state feedback gains seem therefore a good choice for the design. 
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4. Token Passing and Network Protocol 

By far the most important aspect of the project is developing a message passing 
protocol that will be successful in a generalized control network. The protocol primarily 
must assure that each node that needs to send data will have some chance to send it 
Secondly, it must allow for the most desirable transmission of data possible. Desirabilitv 
vanes depending on the network properties that the application requires and includes such 
factors as speed, efficiency, and determinacy. Finally, any protocol should consider that 
future additions may someday be made and maintain a flexibility to handle these additions. 

With these factors in mind, the actual network must be examined. The heart of 
any network is the message passing protocol. As mentioned earlier, a token ring network 
is simply a group of microprocessors connected in series, with each microprocessor 
directly connected only to two others. The first message sent is a startup message and 
must be initiated by the user. After this, the network is constantly running itselfwith 
messages being passed from one node to another, whether or not'thev contain actual data 
If one node has a message to send, it waits for a token which indicates the network is free 
and then grabs the token and sends its message. The message is coded for the address that 
is meant to receive the message so that if there are anv nodes between the sender and 
receiver, they will recognize that the message is not for them and pass it on   When a node 
receives a message that is addressed to it, it will read the message and perform the 
operation indicated.  It may then send a message of its own or send a token, depending on 
whether it has something to say or not. This process is repeated ad infinitum  If a point is 
ever reached where not a single node has a message to transmit, then tokens will still be 
passed from one node to another continuously. 

The communications format for the messages is a standard serial 9600 baud (bits 
per second) transfer. Each of the nodes communicates information bv passin° several 
bytes of data one bit at a time over two wires (one wire contains the information and the 
other is a common ground).  One byte (or character) consists of 8 bits of information 
bach bit of information is assigned either the value 1 or 0.  Depending on the 
communication standard used, the bit values are assigned a voltage level.  For example in 
the RS-232 standard, by which most PC's communicate, a 1 is assigned the value of 
-12 V, and a 0 is assigned the value of+ 12 V. The standard used in the network of PIC 
processors by necessity needs to rely on TTL voltage levels. Thus, a 0 is assigned the 
value of 0 V. and a 1 the value of+5 V. A sample bvte is shown below in Figure 4 1 

10   1    1   |0  jl FIT 

Figure 4.1.   A Sample Character 

This character may be represented as the binary number 10110101,. This number 
may then, for the sake of convenience, be converted to its equivalent decimal 
representation, in this case 181. Using this convention, then, each byte of every message 
is a decimal number from 0 to 255 (000000002 to  111111112). As mentioned before " 
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each message consists of two or more bytes of information communicated serially across 
one wire. 

The way that each node generates these characters varies slightly because each 
node has different capabilities. They all generate the same characters, just in a different 
format. The asynchronous serial communications format used is identical to the one used 
by PC's with the exception of the aforementioned voltage shift. Each character is 
transmitted one bit at a time with the least significant bit transferred first. This complies 
with the RS-232 standard for personal computers. Figure 4.2 shows how the above 
sample character would be transmitted. One can see that following the start bit, the data 
transferred bit by bit is 10101101. Comparing this to the sample byte reveals that the data 
is reversed because the least significant digit was indeed transferred first. This is no 
problem because the receiving node simply shifts the data in from left to right, which shifts 
the first character to the rightmost bit and each successive character one bit to the left. 

8-bit character 

stop bit stop bit 

start bit 

Fieure 4.2.   Transmission of a Character 

The method by which each node generates serial communications also depends on 
the specific hardware. Two of the three PIC processors serving as nodes in the network 
are powerful PIC16C74's with serial communication built into the hardware. This means 
that all that is required to transmit data is simply to load a register called TXREG with the 
8-bit character that is to be sent. Then, by setting a few control registers to govern the 
baud rate and enabling transmission, the data will be sent out at the appropriate speed, and 
the processor can be signaled with an interrupt when one byte is finished transmitting. 
The program can then proceed to the next byte in the same fashion. 

The node that controls the LCD display and communicates with the PC is the less 
powerful PIC16C84. This processor does not possess on-board serial communications 
hardware. In order for it to transmit the information, it must set and clear the transmit pin 
itself according to the data desired to be sent. The processor must also consider the 
timing involved. Depending on the speed of the crystal oscillator being used to drive the 
PIC (in this case 11.0592 MHz), the program must delay for the appropriate number of 
instruction cycles to assure that the time each bit's value is placed on the transmit line is 
1/9600 second, or 0.104 millisecond. If this proper timing is not observed, nodes with 
standard communications interfaces will interpret the messages as garbage and ignore 
them To accomplish this the PIC 16C84 uses a timing loop, where a register is 
decremented every three instructions. When this register reaches zero, the processor 
sends the next bit of data. 
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simply a special character that each node recognizes upon receipt. When it receives the 
token, it checks to see whether it has data waiting to be sent, and either sends that data or 
another token. The token message consists of only one character (000000002) and an 
end-of message character. It contains no addressing characters because a token may be 
sent to any node from the preceding node. Because of the unique way in which CRC is 
calculated, the token does not need a CRC character either. 

In Figure 4.3, a sample message is shown as it would be received by a node. 
Following is a description of how the receiving node interprets the message and carries 
out its instructions. 

0000 0010 1) TO Address 
0000 0001 2) FROM Address 
0000 0011 3) Command Number 
1001 0101 4) Data 
0110 0001 5) Data 
1010 0001 6) Data 
1011 0101 7) CRC 
Olli 1110      8) End-of-message 

Figure 4.3.   A Sample Message 

The first operation that a node performs when it receives a message is to determine 
if the message is. in fact, legitimate. As was mentioned before, this is accomplished 
through the use of the CRC character at the end of the message. The CRC protocol used 
in the network is such that all of the characters received not including the end-of-message 
character are added. If the result is zero, the CRC is valid; if not, it fails. The receiving 
node, then, is not merely looking at the CRC character. It never distinguishes this 
particular character from any of the others. Rather, it adds up all the characters (excluding 
the end-of-message character) and checks for a result of zero. The CRC character is 
merely there to assure that the addition equals zero. For example, looking at the sample 
message, a receiving node would begin adding the bytes in a binary sense and throwing 
out any carry bit that may occur as a result of an addition overflow. (In decimal terms, 
this can be thought of as adding a group of numbers together one at a time and subtracting 
256 whenever the sum reaches or exceeds 256, i.e., modulo 256 arithmetic.) The addition 
of these particular bytes would go as follows: Each byte has the following decimal value, 
respectively: 2, 1,3, 149, 97, 161, 99, 126. The end-of message character, which is not 
used in the CRC calculation, has the value 126. A sum of the first six bytes would yield 
2+1+3+149+97+161 =413. Since this is greater than or equal to 256, 256 must be 
subtracted from the sum to give 157. When the next byte (the CRC byte) is added to the 
running sum. the following result is obtained: 157+99 = 256. Again, since this is greater 
than or equal to 256, we must subtract 256 again to give the number zero. Since the next 
character is the recognizable end-of-message character, it is not added in the calculations. 
The receiving node then stops looking at the characters and checks the CRC sum. Finding 
that it is indeed zero, the node accepts the message as valid and begins processing it. 
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The node then looks at the first byte of the message and compares this number to 
its own address which is stored in its data memory. Assuming they are the same, the 
processing continues. If they differ, the receiving node retransmits to the next node in the 
sequence the exact message it received. (There is an option at startup to initialize all 
addresses of all nodes to zero. In this case, when node receives its first message, it will 
set its address to the value of the first byte of the first message it receives. It can then 
send a message initializing the next node in the chain.) If the addresses are the same, 
which we will assume for our example, the node proceeds to the next byte of the address, 
where it stores the address of the sender. At present, this feature is not used to its 
maximum potential. While a node still records the sender, it never actually uses this 
information. Leaving this as part of the general protocol however, allows for easy future 
improvements and customized messages. 

With addressing complete, the receiving node looks at the third byte of the 
message — the command byte. It stores this command number in a data register and 
performs a jump to the appropriate subroutine. Appendix A4 gives the details of this 
operation. 

When the processor jumps to the appropriate subroutine, it may require some data 
(supplied in the message string) to complete its task. This data is taken from the 
remaining bytes in the message.  In the example, it can be seen that Command 3 required 3 
bytes of data. This data is taken from bytes 4. 5, and 6 of the message. As mentioned, the 
sending node knows what command it is telling the receiving to node to execute and 
therefore knows which data to send in the remaining bytes of the message. 

At this point the receiving node is finished executing its command. This command 
may or may not have required it to send a certain message to another node or even to the 
same node that sent it.  In this case, it sends this message right away in the same format as 
discussed earlier.  In most cases, however, a command will not require that the node send 
data across the network. In these situations, after a node has executed the command it 
was instructed to execute, it checks a flag to see whether input from the user or attached 
sensors requires it to send a message. This may occur when the camera detects a change in 
the position of the ball or when the user turns the shaft encoder, indicating a change bthe 
desired position of the ball. If it has data to send, h jumps to the subroutine which loads 
the data into the appropriate message registers and then goes to its Transmit subroutine, 
which sends data from the message registers until the end-of message character is reached. 
If the computer, after having received a message addressed to it or a token, discovers that 
it does not have data to send, it simply sends a token to keep communications going. 

This seemingly simple format still has various weaknesses that must be overcome. 
For example, if one node, because of sensor input, grabs the token every time that it sees 
it and sends a message for another token down the line, no processors between this node 
and the node to which it sends information will ever have the chance to transmit a 
message. Because this problem is more application specific, it must be dealt with 
depending on the application. In the application presented, the node communicating with 
the camera is the only node whose sensor input might direct it to send information nearly 
every time it encounters a token. The problem is solved in this case by placing the node 
that receives these messages immediately following the node sending them in the ring 
sequence. Another solution might have been to have the camera node send a message 
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ample 

This problem seems small but it could actually effectively lock out all other nodes 
from communicating across the network. One of the main reasons for choosing a token 
ring network in the first place was its almost perfect ability to guarantee every node a 
chance to send a message when it needed to. The removal of this benefit by poor 
placement of two nodes in the network who need to engage in a great deal of one-way 
communication could be disastrous. 

A diagram of the network as it is implemented is shown in Figure 4.4. As can be 
seen, the network contains a double loop, with one particular node being assigned to both 
loops. The reason for this is to accommodate a personal computer into the network yet 
still allow each the PIC processors to communicate if the PC were removed. The extra 
work required by the node attached to both of the loops will be explained in detail later. 
The important point to note is that only one token is actually being passed around between 
both loops. The node which acts as a conduit between the loops is able to detect which 
node it receives its last message from and send the next message to the other node. A less 
physically accurate, but more theoretically correct model of the network is shown in 
Figure 4.5. Here, the network is modeled as a single loop with one node appearing two 
times in the loop. This represents how the actual information passes when the PC is 
present in the loop. 

Figure 4.4.   Network Connection Scheme 
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Figure 4.5.   Network Token Passina Model 

It is convenient to number the nodes in order to more clearlv describe the specific 
algorithm that each follows while the network is running. The most intuitive svstem of 
labeling is simply to label the processors with the actual address that thev possess upon 
startup. This addressing system is shown below in Table 4.1. Each node of the network is 
preset to follow a specific algorithm to handle message passing.  That algorithm will be 
explained here briefly to show the broad picture of the token ring and then explained in 
detail in the following chapters. Node 1, the PC, starts the sequence with a keystroke 
from the user. This initiates a token pass to node 2, which then checks to see if it has any 
iniormation to send, specifically, a new desired position that the user may have updated ' 
using the shaft encoder attached to the LCD display. If the position did change which 
occurs relatively infrequently given the speed at which messages pass around Ve network 
node 2 generates a message to node 1, informing it of the desired change of position   This 
message will be passed through nodes 3 and 4 and back to node 2, the sender of the 
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message. Node 2 will recognize that the message was relayed from node 4, and therefore 
transmit it to node 1, the PC. The PC will then update the change in desired position on 
the screen and send a message to node 2 telling it that it may now change the desired 
position. Now node 2 sends a message to node 4, telling the motor-controlling PIC the 
new desired position of the ball. No response to this message is needed. If the desired 
position had been changed at the computer display, node 1 would have informed node 2 to 
change its desired position and it would have relayed this information on to node 4. 

Node Processor 
PC 
PIC 

PIC 

PIC 

Function 
Display state variables, allow changing of desired position. 
Handle communications with PC, Display position and desired 
position on LCD display. 
Monitor camera inputs and send them to motor-controlling 
PIC. 
Control motor, using digital state feedback. 

Table 4.1. Nodes and their Functions 

This seems rather complicated, but the entire process requires at most two loops in 
the ring, and this is only if the desired position changes.  If the user makes no changes at 
the PC or LCD console, then these two nodes pass tokens to node 3, where a check is 
made to see if the camera detected a position or velocity change of the ball.  If either of 
these variables have changed, then node 3 sends the new values to node 4, where the 
control routine uses this information. Once node 4 has received the token (or a message 
addressed to it), it decrements a counter. When this counter reaches zero, it transmits all 
of its state information to node 1, the PC. for display. The counter can be set to any 
number, depending on how frequently the display needs to be updated, but the process is 
so fast compared to what the eye can see that it does not have to pass it very often.  This 
also cuts down on message traffic which may have precluded another node from sending 
data. 
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5. Individual Nodes 

5.1     Node 2: Interfaces 
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seriously if the display is not updated 10 ms from receiving the command. Other nodes 
might react unpredictably if one of these messages interrupted its critical timing loops. If a 
PIC without serial communication were used for one of these nodes, a new time-interrupt 
driven routine would need to be used, where the processor is able to return to the main 
part of its program and come back to check the data bits at their midpoints. This would 
not be too difficult a problem 

The processor at node 2 must also distinguish between communications coming 
from the PC and those coming from other nodes in the network. With only one interrupt 
pin. this task requires either that polling be used or that the receive signals from the two 
different sources actually come in on the same pin. This second method is possible usins 
an OR gate to allow whichever of the two signals comes in to pass and two distinct 
transmit pins — one for each of the two connecting nodes. A diagTam of this is shown in 
Figure 5.2 Since both sources cannot transfer at the same time, the data out of the OR 
gate will always be valid transmission data. The problem is detecting which of the nodes 
actually transmitted. If one of these two nodes generated a messaeethen the sender can 
be discovered merely by reading the from address attached to all messages. If however, 
the more likely situation arises where one of the two nodes is either passing alons a token 
or a message transmitted by a different node, there is no way to tell where the message 
came from. 

Transmit from PC 

Transmit from PI 
Receive 

Figure 5.2.   Receive Input Logic of Node 2 

The solution to this problem is adding a two byte prefix onto all messages from the 
PC. This will allow node 2 to immediately identify which node sent it the message.  It can 
then retransmit the message to the node that did not send it. The token character, instead 
of simply a zero followed by an end of message character becomes the two prefix bytes, 
followed by the zero, then a CRC, and finally an end-of-message character. The CRC ' 
byte is now needed because, presumably, the prefix characters"are not both equal to zero, 
so they will skew the CRC check without a CRC character to force it to zero. 

5.2     Node 3: Image Processing 

An integral part to the control aspect of this project is the method of measuring the 
values of the states so that they can be used in a control algorithm. The measurement of 
the linear position and velocity of the ball is performed by a sensor suite consisting of a 
CCD analog camera, an LM1881 sync separator, and an LM339N quad comparator. 
Each of these components allows for the proper communication of useful digital data 
between the camera and the sensors. 
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The camera has only three required connections: +12 V DC, ground , and the 
video output signal. This output signal is analog in nature and can be"viewed on a 
monitor. The camera sends out visual data in an interlaced format; it sends all of the odd 
lines followed by all of the even lines. The camera is able to transmit these signals at such 
high speeds that it appears that the picture is being refreshed all at once. Between each 
line, the camera sends a horizontal sync pulse to indicate another line is coming   This can 
be seen in Figure 5.3, where a typical line of data is shown. The sync pulse latts for 
approximately 5 microseconds. During this time a blanking voltage of 0 V is sent to the 
monitor. After the sync pulse, thereis approximately 5 more microseconds of useless data 
before the actual line data is transmitted. Each line of data lasts approximately 63.5 
microseconds. 

Similarly, after each half screenful (262.5 lines) is transmitted, the camera sends a 
vertical sync pulse to indicate that another page is coming. Shown in Figure 5 4 this 
pulse, which occurs much more infrequently than the horizontal svnc. las^s for a much 
longer duration (approximately 240 microseconds). The time between vertical svnc pulses 
is approximately 16.67 milliseconds, the time required for 262.5 horizontal svnc pulses 
and lines of data to go by. Again, there are useless data transmitted before tie first visual 
line. 

63.5 us 

Figure 5.3.   Analog Line Data 



240 us 1 

vertical sync 

Figure 5.4.   A Vertical Sync Pulse 

Unfortunately, data sent in this way are not very helpful to the user of a digital 
computer. The solution to this problem is the LM1881 sync separator. This 8-pin chip 
takes as its input the analog output of the camera. It analyzes the camera signal and 
"strips" several useful signals from it. The vertical and horizontal sync pulses without the 
corresponding line data are outputs of this chip, as is a signal which changes sign each 
time the camera switches between transmitting even lines and transmitting odd lines.  Each 
of these signals is extremely useful to the microprocessor because it is purely digital; the 
only allowable output voltages are 0 V and 5V. One can, for instance, detect what row to 
monitor by watching the vertical sync pin until the pulse is received and then counting the 
horizontal sync pulses until the desired row is reached. 

Now that the various sync pulses have been removed so that they may be used 
efficiently by the microprocessor, the analog data must be manipulated in a similar manner. 
For this particular application, the camera is searching for a white marble on a dark gray 
background. Assuming the computer can find the right line of data to read, its data will 
look something like Figure 5.5. The entire line will be dark except at the coordinates 
where the ball is located. What is needed is a way to tell the computer digitally when the 
ball is found. The solution to this part of the problem is a simple comparator whose two 
inputs are the analog output of the camera and a constant threshold voltage which is 
supplied by a voltage divider. The output of the comparator will simply be 0 V for every 
instance in time where the camera's output is less than the threshold voltage. When the 
camera's output voltage exceeds the threshold voltage (i.e., when the ball is sighted), a 
signal of 5 V will come from the comparator. The microprocessor can monitor this 
change and therefore be able to locate the ball. 
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ball intensity 

voltage threshold 

-/" 

Figure 5.5.   Camera Output When Ball is Found 

With all the signals now conditioned to act as inputs to the PIC16C74 
microprocessor, what still remains is to actually implement an algorithm to continuously 
monitor the position and velocity of the ball. The algorithm is interrupt-driven for precise 
timing and quick response. There are myriad interrupts on the PIC 16C74. These include 
a pin that will interrupt on low-to-high or high-to-low transition, several pins which will 
interrupt when they change value, a timer that will interrupt when it overflows, and 
numerous others. Because of the many inputs to the processor, it would be difficult and 
time consuming to simply poll each input until one of them changes.  Furthermore, a 
possibility exists that important data could be missed if the microprocessor was polling 
another input when data changed on the relevant line. To prevent this from happening, 
interrupts are used which allow the program to continue ninning until a certain condition 
is detected by the hardware. This causes the program to jump to a subroutine where 
different actions can be taken depending on the source of the interrupt. 

The PIC microprocessor monitoring the camera node uses three different 
interrupts for the purpose of determining the velocity. The odd/even signal from the sync 
separator connects to one of the input pins on the PIC with an interrupt on change feature. 
Every time this signal transitions from low to high or high to low, an interrupt is^ 
generated. This allows the PIC to prepare for aU of the*even or odd lines to be 
transmitted. The horizontal sync pin from the sync separator is connected to the only pin 
on the PIC that will interrupt only on one-sided transitions (low-to high, for example). 
This can be set at compile time to occur when the pin transitions from high-to-low or from 
low-to-high, but not both. In this particular case, since the horizontal sync is a low-going 
transition, the interrupt pin is set to monitor high-to-low transitions. The third interrupt" 
used is generated by the internal timer. The PIC possesses an internal timer that 
increments every instruction cycle. By using an available prescaler, this timer can also 
increment every 2, 4, 8, 16, or 32 instructions. The timer is a one-byte register, so its 
maximum value is 255. When the timer increments from 255, it overflows to zero, and the 
timer interrupt flag is set. This interrupt is extremely useful for calculating time dependent 
quantities such as velocity. 

The basic algorithm for the node watching the camera is outlined in the following 
steps: 
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1. Wait for the odd/even pulse — this tells the microprocessor that the beginning of 
a screen has been found, giving it a reference point for counting lines as they are 
transmitted. Both odd and even frames are equally useful, so no distinction need be made. 

2. Wait until desired number of horizontal sync pulses have passed — after the 
odd/even pulse, a certain number of lines will be transmitted before the line on which the 
relevant data exists. Count and wait as these lines pass. 

3. Measure the time until the ball is found — this action is performed without the 
use of an interrupt. Once the correct line is located, the output from the comparator is 
simply polled until a high value is obtained (this is the value where the camera's output 
voltage exceeds the threshold voltage). This time can easily be converted into a distance, 
with experimentation. 

4. Calculate velocity every 10 ms — here the timer interrupt is used to measure an 
exact period of time so the velocity can be quickly calculated. Whatever the position is 
when this interrupt occurred last will be subtracted from the position at the current 
interrupt. This will tell how far the ball has moved in 10 ms, i.e., we have calculated the 
ball's velocity. 

5. Repeat the process — wait for the next odd/even pulse and begin again. 

The effect of the node attached to the camera in the overall token passing process 
is fairly simple.  It must have the ability to pass any messages it receives to the next node 
in the sequence (as must all the nodes) as well as the ability to generate a message that 
sends the position and velocity data of the ball to the motor-controlling node. This node 
does not, however, need to worry about receiving any messages since there are no 
parameters that ever need changing. The algorithm for message handling is simple. If the 
node receives a message addressed to a node other than itself, it checks the CRC and then 
passes along the message to the next node in the ring.  If the node receives a token, it 
checks to see whether the position and velocity of the ball have changed since the last 
update. If one or both of them have changed, the node sends a message to the motor- 
controlling node (which happens to be the next in sequence) updating these two states. If 
the node happens to receive a message addressed to it, it checks the CRC but ignores the 
content of the message and treats it like a token. If the CRC check ever comes up wrong, 
the node ignores whatever message was received and sends a token. 

Part of this algorithm works so well because the node watching the camera output 
is positioned immediately before the motor-controlling node in the sequence. If there 
were nodes in between the two, a different, more complicated algorithm would need to be 
written so that the node assigned to the camera does not take control of the token every 
time it receives it. This is acceptable presently because its message is always for the node 
immediately following it. However, if nodes between these two wanted to send a 
message, they would never have the chance except in the rare case where position and 
velocity data did not change between passes. This placement is not an accident, nor is it 



simply a convenient way to avoid a problem. In a token ring network, it makes a good 
deal of sense regardless of physical location to place a node that sends messaoes *" 
exclusively to one other node immediately preceding this other node. This is"especiaUv 
true tf the sending node must send this data frequently, as is the case with the camera-" 
watching node. 

5.3 Node 4: Motor Control 

The node which is most directly responsible for the implementation of the motor 
control is the PIC16C74 processor at node 4. This processor is responsible for accepting 
desired position inputs from nodes 1 and 2 and actual position and velocitv inputs from *" 
node j. At the same time, this processor must monitor the turn of the motor to measure 
Üie two other states-anguJar position and velocity of the beam.  This requires a *reat 
deal of the processor's resources and therefore is best suited to the PIC 16C74    " 

The processor measures the angular position and velocitv of the motor'bv usino an 
optical shaft encoder which is attached to the motor itself. This'shaft encoder has two" 
important outputs which are denoted Phase A and Phase B.  These are the outputs that 
change as the motor is turned. A representation of the two outputs is shown below in 

B 

Figure 5.6.   Phase Outputs of Shaft Encoder 

The way these outputs work is fairly simple. As the motor turns in a clockwise 
direction, the two signals proceed from left to right in the figure above   If the motor 
instead moves counterclockwise, the signals move from right to left. The signals change 
at a speed proportional to the motor speed, with a resolution of 4000 phase"transitions"per 
revolution. By monitoring the changing of these signals, one can easily determine how far 
and in what direction the motor has moved. 

The way in which the program performs this is by accepting Phase A as the input 
to a pm which interrupts on a low to high transition and Phase B on a noninterruptable 
pin. Whenever Phase A goes high, the program checks Phase B to see whether it is high 
or low.   I his determines motor direction. For example. Figures 5.7 (a) and (b) show the 
difierence of the two signals in a clockwise and counterclockwise motion   These signals 
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at first look the same, but upon closer inspection, are very different. Each time Phase A is 
transitioning from low to high in figure 5.7 (a). Phase B is at a low point. On the other 
hand, each time Phase A goes from low to high in the counterclockwise direction, in 
Figure 5.7 (b). Phase B is high. So the processor knows after checking Phase B that the 
motor moved one count in either a clockwise or counterclockwise direction. It can store 
this in a register and update it each time an interrupt is detected. 

It may be noted that this method of measuring the angular position reduces the 
precision by one fourth. Instead of updating the angular position register each time either 
phase changes value, it is updated only when phase A goes high. This reduces the 
resolution to 1000 counts per revolution. It is advantageous to give up this resolution 
because it is not really needed. At 1000 counts per revolution, the register storing the 
angular position increments nearly 3 times for every degree turned, easily precise enough 
for the current problem If the processor were to interrupt four times as often, problems 
with timing and switching between functions would arise much more frequently. There 
would be little time to spend in the main program and excessive amounts spent in the 
interrupt routine. 

>v J\ /v. A 

B 

(a) Clockwise Motion 

B 

(b) Counterclockwise Motion 

Figure 5.7. Phase Outputs of Shaft Encoder 

Once the motor-controlling node has calculated the angular position and velocity 
of the track using the shaft encoder, and has received from the camera node the position 
and velocity of the ball, it is ready to begin implementing the state feedback control that 
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was discussed earlier. Because of the digital nature of the microprocessor, the feedback is 
sampled at a regular time interval. This data is used to calculate the torque that the motor 
must exert in order to drive the ball toward its desired position. The samplina time chosen 
tor this particular problem was 10 milliseconds. This allows ample time for the manv 
mukiphcations required to obtain the solution. Because the processor has no built in 
multiplication routine, repeated additions are required to multiply two numbers tosether 
I his requires time as one register is shifted while the other is added repeatedly     " 

As mentioned before, the proposed design is an integral state feedback design 
I ms requires the processor to perform some operation comparable to an intearal of the 
error data it receives. The way the processor accomplishes this is by performing a digital 

.    °rder EuIer aPP™ximation to the integration. A first order Euler approximation^ 
given in (5.1) with the equivalent integral form shown in (5.2). 

x(t + At) = x(t) + x(t)At (5i) 

\x{t + At)dt = ^x{t)dt+x{t)At (5.2) 

The way that the processor calculates the integral is by assumina a step size of 100 
milliseconds and calculating the difference between the desired positioned actual 
position at each sample. This difference is then multiplied by the step size At and added to 
the previous value of the integral. This is an iterative process that could cause the integral 
to increase^definitely if the ball were not responding properly. For this reason, a hmkis 
placed on the maximum value of the integral. When this limit is reached, maximum torque 
will be applied to the motor. H 

thic r    ^ K 
thC Pr°CeSSOr Calculates the ™<i™^ torque needed bv the motor, it applies 

^s torque by making use of the UDN-2954 motor driver. This chip, essentially an H- 
bndge with four transistors, allows the PIC to use pulse width modulation (PWM) to drive 

annTT ^    f ^ " ba± *' posftive ^ ne?ative ^^^ Fortunately, this is 
ano her built in function of the PIC16C74. By setting up various control registers related 
to this function the PIC can change the duty cycle of one of its output pins h, a single 
instruction cycle. The way PWM works is simple. The periodic PWM output drives the 
base of a transistor which allows current from the power source to flow through the motor 
m the same periodic signal. When this square wave is input into the motor, it possesses a 
DC average value as well as components at multiples of its frequency. A DC motor bein2 

a low pass filter, these high frequency terms are cut off  So, in effect, a +6 V DC value ~ 
can be created by driving a +12 V square wave at 50% duty cycle 

u*-,i,  ™e °*f >Put ** the m°t0r driver requires is a Phase »P«t. This is the input 
which tefls the driver which way the motor is to be turned. By usina these two inputs 
alone, the processor is able to turn the motor at any speed up to its maximum in either 
direction^ When the program calculates the required value for the torque, it checks to see 
whether the number is positive or negative. This determines whether the Phase gets set or 
not.   I he program then calculates the magnitude of the required torque and places a 
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multiple of this value in the PWM register. In this way, the PIC is able to successfully 
implement state feedback control. A Phase and Enable combination is shown below in 
figure 5.8. The Enable pin is active low, so the extremely short duty cycle shown in the 
figure will actually cause the motor to turn at a high speed. 

+5 V 

GND 

+5V 

Phase 

GND 

Enable 

Figure 5.8.   Motor Driving Signals 

Most of the communications performed by node 4 are receptions. The only 
message that this node transmits is a periodic update of its state data every five passes 
throught the control loop, at which point it sends to the PC the present values of position 
and velocity of the ball, and angular position and angular velocity of the track. 

One of the abilities that was considered when designing the network was that 
certain values might need to be obtained at startup that were not initially hardcoded into 
the programming of the actual processors. It is for this reason that a serial EEPROM 
(electrically erasable programmable read only memory) is attached to four pins of the node 
governing motor control. This EEPROM can store up to 256 16-bit values in its memory, 
and it will retain these values when power is lost to the network. This is a useful place to 
store feedback gains for the processor to use when controlling the motor. It may also be 
useful for storing values of trigonometric functions that play a part in nonlinear problems 
like this one. The EEPROM can be read in a single interaction cycle. This allows the 
programmer to place useful data in the EEPROM ahead of time without worrying about 
long delays. 

A series of subroutines coded into the processor at node 3 controls their operation. 
The connection requires only four wires: a clock pin, chip select, data input, and data 
output line. The process for reading from or writing to the EEPROM requires first that 
the chip select be turned low and that the proper command is clocked in serially across the 
data input line. The EEPROM interprets the command and either waits for more data 
over the same line in the case of a write command or places data on the data output line if 
a read command is invoked. 
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The use of the EEPROM in the control problem adds a sense of robustness. A 
user desiring to change the feedback gains can simply program the EEPROM at his leisure 
and replace the existing EEPROM in order to alter the response of the ball. This may be 
especially useful in a situation where no PC is present in the loop. 
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6. Conclusions 

The research performed thus far has proven the token ring as a legitimate choice of 
a protocol for a control network. A network has been created and messages relating to 
the control problem are able to pass through it without flaw. The entire control problem 
has not yet been completed as there are still problems with the digital state feedback 
routine. Stilk enough is working to make several conclusions about the performance of 
the token ring protocol for real-time control networks. 

The response time noticed as messages are being passed among the nodes is fast 
enough for the sample control application. One of the worries when choosing a token ring 
network is that as the number of nodes is increased, the time for a message to pass around 
the loop increases as well. In the specific application, the messages clearly pass fast 
enough to allow the motor-controlling node enough time to perform its intense 
mathematical subroutines on updated information, instead of having to use the same 
sample on several times. 

Even more importantly, each message was able to send its data packet in less than 
two passes of the token around the entire loop. The most important advantage of using a 
token ring network is that all messages that need to send data will be able to send that data 
in under a specified period of time. Under many of the other possible protocols, the 
average message time was much quicker, but this gain in speed was at the cost of 
determinacy — one could never know exactly when a node would communicate its data. 
If two nodes attempted to communicate at the same time, they could temporarily stall the 
network. This is not a problem in the token ring network. 

The cyclical redundancy checking proved an effective way of stopping errors in the 
network. When a faulty message was intentionally sent, the first node that received it 
absorbed the faulty message and sent a token instead. The error detection rate 
approached 100 % using random flawed data. The only situations in which the CRC 
check failed is when the same bit in an even number of characters was altered, but this was 
expected and accepted as a limitation of the CRC error-checking protocol. Very little 
time passes while a node calculates the CRC h is required to send along with its message. 
The benefit of using more advanced error-checking routines that find nearly all errors is 
offset by the loss of network speed. 

This network of single-chip microcomputers was able to successfully communicate 
with a modern personal computer. This allows a user to update data directly using a 
medium with which he is familiar. Further, myriad applications are possible now that this 
network can interact with a PC using the RS-232 standard. 

The token ring protocol used in control networks of tiny microcomputers has 
proven very effective in the sample control application. In spite of its failure to complete 
the problem in its entirety, the scheme of message passing and error checking performed 
flawlessly and efficiently. Several applications now exist in which the use of this protocol 
may prove beneficial, and the future will continue to see the rise of such applications. One 
vision of the future is shared below: 

"Picture your office building early one morning, some years hence. You get in by 
sliding your badge through an access system's card reader. Instantly, the lights leading to 
your office flicker on. As you push to open the office door, lights and temperature adjust 



40 

to the settings you picked yesterday. Meanwhile, the process control network in the 
manufacturing area sends your computer the latest statistics. 

"Abruptly, a fire alarm system warns you of smoke and fire in a section of the 
factory floor. It also alerts the local fire department by phone, and your heating and air 
conditioning die. The process control network shuts down the manufacturing line, the 
access control system lists who is where in the building for the fire department, and the 
lighting control network turns on all lights along the routes to the emergency exits. All 
this happens painlessly and flawlessly" [3]. 

This example, while not yet possible, demonstrates the power of the control 
network. An effective protocol for single-chip computers will only increase this power. 
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Appendix Al 

Calculating System Equations 

The following MATLAB file calculates the nonlinear equations governing the 
ball/beam system using Lagrange's method. It returns three different sets of equations 
which may be considered by the user: 1) the full dynamics, allowing slippage and 
orthogonal velocity effect, 2) a simplified modeL ignoring the effect of the orthogonal 
velocity component, and 3) an even simpler model ignoring supping as well. 

! 

disc ( ' -,--<--t^-**^ + + *-i- + + + i- + + + » + 4. + + + + *^. + + + ^J.^^^.<.^_J.^»J.J. i ) 

dispi'- + + + *. + + + + *,      FULL MODEL  **---~-t + + ^^_ + + ■ ) 
disp( '•"-^-"^ + -~^.~^ + + -^^ + + + ^,.^.^,.^„„_ + ^,.. j 

KEi='1/2-M1*(dx*2+(x*dth)'2) + (1/2!-(2/5-Ml*R~2)-(dx/R+dth)"2'; 
KE2='1/2*(M2-L*2/I2)-dthA2'; 
KE=symop(KEl,'+',KE2) 
PE='-Ml*G-x-sin(ch)' 
LAG=symcp(KE,'-',PE) 
Fx='-Ex'dx'; 
Tl=diff(LAG,'dx'); 

T2=symcp(diff(Tl,•x'),'*','dx'); 
T3=symop(diff(Tl,'dx'),'*','ddx'}; 
T4=symop(diff(Tl,'th'),■*•,'dth'); 
T5 = symop(diff (Tl, 'dth' ),'*', 'ddth' ) ,• 
T6=diff(LAG,'x'); ' 
Tx=symop(T2,'+",T3,'+',T4,'+',T5,'-',T6,'-',Fx) 
% collect(Tx,'ddx') 
% collect; (Tx, 'ddth' ) 
Fth ='Tm-Eth*dth'; 
Tl=diff (LAG, 'dth' ) ,- 

T2=symop(di£f(Tl,'x'),'*',,dx'); 
T3=symop(diff(Tl,'dx'),'*','ddx'); 
T4=symop(diff (Tl,'th'),'*' , 'dth' ) ,• 
T5 = symop(diff(Tl, 'dth'),'*', 'ddth') ; 
T6=diff(LAG, 'th') ; 

Tth=symop(T2,'+',T3,'+',T4,'+',T5,'-',T6,'-',Fth) 
% collect(Tth,'ddx') 
% collect(Tth,'ddth') 
[ddx,ddth]=solve(Tx,Tth,'ddx,ddth'); 

disp('ddx') 
for i=l:70:length(ddx) 
disp(ddx(i:min(i+69,length(ddx)))) 

end 



dispCddth' ) 
for i=l:70:length(ddth) 
disp(ddth(i:min(i+6S,length(ddth)))) 

end 

% return 

% Now substitute in some numbers 
ddxl=subs(ddx, '9 . 8 0621', 'G' ) ; 

'0.2','Ml'); 
'0.4 5 ' , 'M2') ; 
' 1 . 3 ' , ' L ' ) ; 

'0.01' , 'R' > ; 
'0.001 ' , '3x') ; 

■ 0.01 ' , 'Bth') ; 

ddxl=subs(ddxl, 

ddxl=subs(ddxl, 

ddxl=subs(ddxl, 

ddxl=subs(ddxl, 

ddxl=subs(ddxl, 

ddxl=subs(ddxl, 

ddthi=subs(ddth, 

ddthl=subs(ddthl 

ddthl=subs(ddthl 

ddthl=subs(ddthl 

ddthl=subs(ddthl 

ddthl=subs(ddthl 

ddthl=subs(ddthl 

9.80621','G') 

' 0.2' , 'Ml') ; 

'0.4 5 ' , 'M2') ; 

' 1 . 3 ' , ' L' ) ; 

' 0 . 01 ' , ' R ' ) ; 
• 0.001 ' , 'Hx' ) 

• 0.01 ' , 'Bth') 

disp('ddxl') 
for i=l:70:length(ddxl) 
disp(ddxl(i:min(i+69,length(ddxl)))) 

end 

disp('ddthl') 
for i = l :70:length(ddthl) 
disp(ddthl(i:min(i+69,length(ddthl)))) 

end 

disp ( 

disp ( 

disp ( 

disp ( 

disp ( 

disp ( 

disp ( 

+ -*-♦- ++ + -!- + -»- + + -*- + + 

END FULL MODEL ■' ) 

+ +^.-^ + ^.^. + + + + ^- + + ■>. + + + + ^^■>■ + + -^■ + + + + + ^^■ + + + + + ■>■ + + + + •t■■,■ + -,■     > 

+ + + + + + + + -,. + + +  SIMPLIFIED MODEL  ++++++++++++') 

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -t'-,- + + + + + + + ' < 

KEl='l/2*Ml«(dx*2+(x*dth)"2)    + (1/2)*(2/5*Ml*RA2)*(dx/R)*2' 

KE2='l/2-(M2-LA2/12)*dth*2'; 

KE=symop(KEl,'+',KE2) 

PE='-Ml*G-x*sin(th)' 

LAG=symop(KE, '-',PE) 

Fx='-Bx*dx'; 
Tl=diff(LAG,'dx'); 

T2 = symop(diff(Tl, 'x') , '* 

T3=symop(diff(Tl,'dx'),' 

T4 = symop(diff(Tl, 'th') , ' 

T5=symop(diff(Tl,'dth'), 

T6=diff(LAG, 'x') ; 
Tx=symop(T2,'+',T3,•+',T4,'+',T5,'-',T6,'-',Fx) 

% collect(Tx,'ddx') 

% collect(Tx,'ddth') 

' dx' ) ,- 

,'ddx'); 

, 'dth' ) ,- 

','ddth') 
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Fch='Tm-Eth*dth'; 

Tl=diff(LAG,'dth'); 

T2=symop(diff(Tl,'x'),'*','dx'); 

T3=symop(diff(Tl,'dx'),•*■,'ddx'); 
T4=symop(diff (Tl, ' th' ) . ' * ' , 'dth' ) ,- 

T5=symop(diff(Tl,'dth'),'*','ddth'); 

T6=diff(LAG,'th'); 

Tth=symop(T2, '+',T3, ' + ',T4, ■ + ' ,T5, '-' ,T6 , 

% collect(Tth,'ddx') 

% collect(Tth,'ddth') 

[ddx, ddth] =solve(Tx,Tth, 'ddx, ddth' ) ,- 

',Fth) 

disp('ddx') 

for i = l :70:length(ddx) 

disp (ddx (i:tnin(i + 69,length (ddx) ) ) ) 

end 

disp('ddth') 

for i = l :70:length(ddth) 

disp (ddth ( i :tnin (i + 6 9, length (ddth! ) ) 

end 

% Now substitute in some r.urrbers 

ddxl=subs(ddx, S.80621','G') 

ddxl=subs(ddxl '0.2','Ml'); 

ddxl=subs(ddxl '0.4 5 ' , 'M2' ) ; 
ddxl=subs(ddxl ' 1 . 3 ' , ' L ' ) ; 

ddxl=subs(ddxl ' 0 . 0 1 ' , ' R ' ) ; 
ddxl=subs(ddxl '0 .001 ' , 'Ex' ) 

ddxl=subs(ddxl •0.01' , 'Eth' ) 

ddthl=subs(ddth, 

ddthl=subs(ddthl 

ddthl=subs(ddthl 

ddthl=subs(ddthl 

ddthl=subs(ddthl 

ddthl=subs(ddthl 

ddthl=subs(ddthl 

9.80621','G') 

'0.2','Kl'); 

'0.4 5 ' , 'M2' ) ; 

' 1 . 3 ' , ' L ' ) ; 

'0.01 ' , 'R' ) ; 

' 0.001' , 'Ex') 

'0.01' , 'Eth') 

disp('ddxl') 

for i=l:70:length(ddxl) 

disp(ddxl(i:min(i+69,length(ddxl)); 
end 

disp('ddthl') 

for i = l :70:length(ddthl) 

disp(ddthl(i:min(i+69,length(ddthl] 
end 

disp('++++++++++++++++++++++++++++++++++++++++++++') 

disp('++++++++++ END SIMPLIFIED MODEL ++++++++++') 

disü( ' + + + + + + + + + + + + + + ++ + + + + + + + + + + + + J-J- + + + + + + + + -^ + + + +' ) 
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Appendix A2 
Integrator State Feedback Design 

The following MATLAB code acts on the linearized state-space matrix and 
calculates five gains (for the fifth order system) to place the poles in the user specified 
location. 

% Linearization and Simulation of ball/beam dynamics 

Ml=0.113; 

M2 = 0.4 5 5 ; 

Bx=0.01; 

3th=0.01; 

G=9.80621; 

L=1.0; 

x01=0; x02=.5; JTn itial and final ball position 

%'dse final position in forming [A,B,C,D] 
x0 = 0; 

DEN=Ml*xO*2+M2*L/2/2; 

Az=[0 1 0 0; 0 -5/7*Bx/Ml 5/7*G 0; 0 0 0 1; Ml'G/DEN 0 0 -3th<'DEN] 
Bz=[0 0 0 1/DEN]•; 
Cz=[1 0 0 0] ; 

Dz = 0; 

p=[-l+.7*j -1-.7-J -1.1+.7-J -l.l-.7*j -2]      ,-desired poles 

cei=conv([i -p(l)],[i -p(2)]); 

ce2=conv([i -p(3)],[l -p(4)]); 

cel=conv(eel,ce2); 

ce=conv(cel,[l -p(5)]); 

ce=ce(2:6); 

Kbar=willt(Az,Bz,Cz,ce); 
K=-Kbar(5) 

%Kz=place(Az,Bz,p); 

Kz=Kbar(1:4); 
Kl=Kz(l) 

K2=Kz(2) 

K3=Kz(3) 

K4=Kz(4) 

Acl=Az-Bz*Kz; 

t=0:.01:10; 

[num,den]=ss2tf(Acl,Bz,Cz,Dz); 
num=K*num; 

den = conv(den, [l 0]); 

[numcl.dencl]=cloop(num,den); 
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step(numcl,dene1,t); 
[Ai,Ei,Ci,Di]=tf2ss(numel,dencl); 

%U=ones(size(t)); 
%U=x02'U; 
XXO=[xOl 0 0 0]'; 
%return; 

%[YY,XX]=lsim(Acl,Bz,Cz,Dz,U,t,XXO); 
%[YY.XX]=lsim(Ai,Bi,Ci,Di,U,t,XXO); 

%plot (t, YY) ; grid; figure (gef) ,- 

%Tm=-XX»Kz'-Ml-G*x02;   %Motor torque to apply 
%tt=t'; 
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Appendix     A3 

Additive Clock Operations 

The PIC processor has a program counter that increments after each instruction. 
The new value of the counter will be the address in program memory of the next command 
that it executes. On a GOTO or CALL statement (the only two jumping instructions), the 
processor loads the value of the address that is jumped to into the program counter before 
executing the jump instruction. This is how it knows where to go to execute the next 
instruction. It is also possible to simulate a jump by adding a number direct]}' to the 
program counter. The program counter increments after it executes the instruction on its 
address line, so if the instruction adds a number to it, it increments this by one more. 
Looking at the following, the first and second lines save the third character of the message 
(the command byte) into a register called Command. The program counter then 
increments by one to go to the next step.  In this next step, the PIC adds the value just 
stored in the command register the present value of its program counter and then 
increments the value of the program counter by one. For simplicity, assume that the 
message was the same as the example message earlier and that the program counter has 
the value of the line numbers in the code below. The program counter currently has the 
value 2. When the value of the Command register (a decimal 3) is added to it, it then 
contains the value 5. After it executes this addition instruction, it increments itself by one 
expecting to go to the next line. Actually, it contains the value 6, so it jumps to that line. 
When it reaches line 6. it executes the instruction there and jumps to the section of code 
labeled Cmd3.  In this way, it is able to use the value of the third byte of the message to 
execute a certain command. 

;move third byte of message into W 
;move W reg into Commang reg 
;add value of Command to counter 

1 movf Msg+3,w 
2 movwf Command 
3 addwf PCL,F 
4 goto Send Token 
5 goto Cmdl 
6 goto Cmd2 
7 aoto Cmd3 
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Appendix A4 

Node 2 Source Code 

The following code is the actual machine language code that is programmed into 
node 2 of the network, the node responsible for communicating with the PC as well as the 
other PIC processors. 

"NODE2.SRC" 

DEVICE  PIC16C84,KS _( 

;Registe rs 
ORG OCh 

TmpW DS 1 
TmpSTAT DS 1 
TmpINT DS 1 
Tmp DS 1 
Tmpl DS 1 
Tmp2 DS 2 
CNT DS 2 
i DS 1 
CRC1 DS 1 
CornStat DS 1 
ComReg DS 1 
ComCnc DS 1 
DelCnt DS 1 
ADDR DS 2 
PosD DS 1 
Pos DS 1 
Fig DS 1 
Disp DS 3 
DCnt DS 1 
Msg DS 1 

,-Numeric constants 
F = 1 
LSB = 0 
MSB = 7 
RCF = CornStat 0 
TXF = Comstat 1 
CRCErr = ComScac 2 
FERR = CornStat 3 
OERR = ComStat 4 
DTS = CornStat 5 
toPC = CornStat 6 
EOMchr equ I __ I 

IntVEC equ 10110000b 
RSI equ Fig.7 ; 
tmout equ Fig.6 

various flag bits 
; digits to display (up to 6, ECD) 

; End-of-message character 
; GIE=1, RTIE=1, INTE=1 

temporary storage for RS status 
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PHAlasc equ Fig 5 
mseclOO ecru Fig 4 
ch_pcs equ Fig 3 
ch_posd equ Fig 2 
first equ Fig 1 

last value of 'PKA' of input shaft encoder 
1=100 msec elapsed 
ball position changed 
desired position changed 
»first character received 

,-Pin assignments 
RX equ PORTB.0 
TX1        equ PORTA.3 
TX eou PORTA.2 

; Signals to the 40x2 LCD display (data is sent on PORTB.6 
RS equ  PORTB. 1 
RW equ   PORTB.2 
CLK equ   PORTA.4 

; Signals from input shaft encoder (inputs) 

Code Soace 

PORTB.3) 

FKA equ PORTA.O 
PHB equ PORTA.1 

ORG 0 0h 
goto START 

ORG 04 h 

goto ISR 

LUT1 addwf 2, F 
retw 'POS(d) ', EOMchr 

LUT2 addwf 2, F 
retw 'POS ', EOMchr 

LUT3 addwf 2, F 
retw 'OK', EOMchr 

ISR movwf TmpW 

swapf STATUS,W 
movwf TmpSTAT 

btf sc INTF 
call Receive 
btfsc RTIF 
call Timer 

ENDISR 

swapf TmpSTAT,W 
movwf STATUS 
swapf TmpW,F 
swapf TmpW,W          ;] 

retfie 

ISR Space 

,-Save contents of W register 

Save contents of STATUS reaister 

Put contents of STATUS register back 

,-Put contents of W register back 

"Timer" handles the 100 microsecond timer interrupts 



Timer bcf 
clrf 

RTIF 
RTCC 
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Shaft btf SC PHAlast 

goto :L0 
btfss PHA 
goto :L0 
bsf ch_posd 

bsf DTS 
btfss PHB 
goto : inc 

:dec decf PosD, F 

movlw 156 
subwf PosD,W 

btfss Z 
goto :L1 
movlw 157 
rnovwf PosD 

goto :L1 
: inc incf POSD, F 

movlw 100 
subwf PosD,W 

btfss Z 
goto :L1 
movlw 99 
rnovwf PosD 

: Ll bsf tmout 

:L0 bsf PHAlast 

btfss PKA 
bcf PHAlast 

; bsf tmout 

.•call PosD_Chg 

return 

START bsf RPO 
clrf INTCON disab 
movlw 03h 
rnovwf 05h TR ISA 

movlw 01h 81h 
rnovwf 06h TRISE 
movlw 10001000b 
rnovwf OPTION Inter 

bcf RPO 
movlw 2 
rnovwf ADDR 

clrf PosD 
clrf Pos 
clrf Flg 

bsf ch_pos 

bsf ch_posd 

bcf RCF 
bsf TX1 

InterruDt on fallina edge of B0 



bsf TX 
,-movlw 5 

,-movwf testcnt 
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LCDprep 

call LCD_init 
call LCD_clear 

PrepO movlw Msg 
movwf FSR 

Prepl movlw INTVEC 
movwf INTCON 
;goto print_ok 

MAIN btfss tmout 
goto :M1 
bcf tmout 
call message 

:Mi  bcfss RCF 
goto MAIN 

,-goto loop 
bcf RCF 
,-goco print_OK 
movf ComReg,W 
movwf 0 
,-goto print_OK 
sublw EOMchr 
btfsc z 
goto Process 
incf FSR.F 
movf FSR,W 
sublw 2Fh 
btfsc C 
goto Prepl 
;goto print_ok 
,-goto PrepO 

;Begin processing message 
Process 

;goto print_ok 
bsf toPC 
movlw Msg 
movwf FSR 

to FSR 

movf 0, W 
btfsc Z 
goto New Info 
sublw ' W 
btfsc z 
goto CPU 
call CRC 
btfss Z 

,-move address of Msg register to FSR 

;Enable interrupts (GIE RTIE and INTE) 

,-wait for receipt of byte 
;Main part of Drocrärr. her; 

:move byte into current Msa reaist; 

rprepare for next byte 
;see if addressing beyond memory 

;reenable interrupts 

:end of buffer, start over 

rmove address of first byte (address) 

read address 
token received 
check to see if data needs to be sent 
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yet 

PO 

noD 
,-goto print_ok 

movlw Msg 
movwf FSR 
movf ADDR,W 

bcfsc Z 

movf 0,W 
movwf ADDR 

movf 0,W 
subwf ADDR.W 

btf ss Z 
goto RetranstoPC 

,-call CRC 
,-goto CRC 
movlw Msg+1 

movwf FSR 
movf o,w 
movwf ADDR-1 

;check to see if node is addressable 

;first byte is defining address 

,-message not for this node 

;check CRC 
;"From" address 

;move address of sending byte in 
;ADDR+1 recister 

■ Exe^~ ute instruct ion specifie 

Comma nd 
ir.cf FSR,F 

movf 0,W 
addwf PCL, F 

CmdO goto New_Info 

Cmdi goto Chg_PosD 

Cnd2 goto Chg_Pos 

Cmd3 goto New_Infc 

Cmd4 goto New_Info 

CmdE goto New_Info 

Cmd6 goto New_Info 

Cmd7 goto New_Info 

CmdS goto New_Info 

Cmd9 goto New_Info 

CmdA goto New_Info 

CmdB goto New_Info 

CmdC goto New_Info 

CmdD goto New_Info 

CmdE goto New_Info 

CmdF goto New_Info 

CPU bcf toPC 

call CRC 
btf ss Z 
goto Send_Token 

,-goto print_ok 

movlw Msg + 1 

movwf FSR 
movf 0,W 
sublw ' P' 

btfss Z 

by message 

reserved for future use 
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goto New_Info 

info/pass token 

PI    incf FSR,F 
movf o,w 
btf sc z 
goto New_Info 
movf ADDR,W 
btf sc Z 
movf o,w 
movwf ADDR 
movf 0,W 
subwf ADDR,W 
btfss Z 
;goto print_OK 
goto Retrans 
;call CRC 
movlw Msg+3 
movwf FSR 
movf 0, W 
movwf ADDR+1 

ADDR+1 register 

goto Command 

;message not valid; check for new 

read address 

token received 

check to see if data needs to be sent 

rcheck to see if node is addressable 

;first byte is defining address 

message not for this node,- retransmit 
check CRC 

"From" address 

,-move address of sendina■ bvte into 

,-Cmdl - update the desired position of the ball 
Chg_PosD 

movf Msg+5,W 
movwf PosD 

bsf ch_posd 
;bsf DTS 

,-goto New_Info 

call message 

goto PosD_Chg 

,-goto Send_Token 

;Cmd2 - update the position of the ball 
Chg_Pos 

movf Msg+3,W 

movwf Pos 

bsf ch_pos' 

goto New_Info 

;Check to see if node has data to be sent; if so, send that data.  If 
not, pass token 

New_Info 

movf Msg,W 

btfsc DTS            ,-does new data need to be sent? 
goto PosD Char 

;Transmit token to next node in sequence 
Send_Token 

clrf       Msg 

movlw      EOMchr 

movwf      Msg+1 

btfss      toPC 
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goto 
. aoto 

Send 
SendtoPC 

/Change desired position of ball 
POSD_ Chgr 

bcf DTS 
movlw Msg 
movwf FSR 
movlw Olh 
,-movlw 04h 
movwf 0 
incf FSR,F 
movlw 02h 
movwf 0 
incf FSR,F 
movlw 02h 
movwf 0 
incf FSR, F 
movf PosD.W 
movwf 0 
incf FSR, F 
mcvlw EOMchr 
movwf 0 
call CRCCaic 
btf ss toPC 
goto Send 
goto SendtoPC 

PosD_ _Chg 
bcf DTS 
movlw Msg 
movwf FSR 
movlw 04h 
movwf 0 
incf FSR, F 
movlw 02h 
movwf 0 
incf FSR,F 
movlw 02h 
movwf 0 
incf FSR.F 
movf PosD,W 
movwf 0 
incf FSR, F 
movlw EOMchr 
movwf 0 
call CRCCaic 
btfss toPC 
goto Send 
aoto SendtoPC 

:request from PC to change PosD 

;message goes to node 4 

,-message is from mode 2 

;execute command 2 

■recuest from PC to cnar 

;messaoe coes to r.oae 

,-messaae is from mode 2 

■execute command 2 

-'-•<=  D^c1^ 

,-Transmit data in Msg+n to Node 3 until End of Message byte is reached 
,• Strip WP from message 
Retrans 
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movlw Msg 
movwf FSR 

:R0 incf FSR,F 

incf FSR,F 
movf 0,W 
decf FSR,F 

decf FSR, F 
movwf 0 
sublw EOMchr 

btf sc Z 
goto :R1 
incf FSR,F 

goto :R0 
:R1 call CRCCalc 

goto Send 

.-Transmit data in Msg+n to Node 1 until End of Message byte is reached 

RetranstoPC 

goto SendtoPC 

; "Se nd" retrar smits back command string for checking or passing on to 
next machine 

Send mov 1 w Msg           ; Address of "Msg" into w 
movwf FSR            ,- Load FSR with Command Byte 

Sendl movf 0, W           ,- Read command 
movwf ComReg 
call XMIT 
movf 0, W           ,- Read command 
sublw EOMchr         ; check for end-of-message byte 
btfsc Z 
goto PrepO 
incf FSR, F         ; increment FSR register 
goto Sendl 

,- "SendtoPC" re transmits back command string for checking or passing on 
to next machine 

Sendt oPC 
movlw Msg           ; Address of "Msg" into w 
movwf FSR            ; Load FSR with Command Byte 

StPl movf 0, W          ; Read command 
movwf ComReg 

call XMITtoPC 
movf 0, W           ; Read command 
sublw EOMchr         ; check for end-of-message byte 
btfsc Z 
goto PrepO 

incf FSR, F         ; increment FSR register 

goto StPl 

' 

LCD_init 

bcf RSI            ; Send instructions 



call D41 
call D41 
call D41 
call D41 
movlw 00000011b 
call Send4 
call D41 
movlw 00000011b 
call Send4 

movlw 00000010b 
call Send4 
movlw 00101000b 
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Delay at least 15 ms (4x4.1 is OK) 

send lower 4 bits of [W] 

; Function Set:  Sets to 4-bit' 

; Function Set:  2-line display and 
5x7 dot character font 

call       Send8 
movlw      00001110b      ,- Display ON/OFF Control: 
movlw      00001100b      ; Display ON/OFF Control: 
call       SendS 
movlw      00000110b      ; Entry Mode Set:  Increment address 

by 1 and shift cursor to right 

; Clear display and place cursor or. 

; Preoare to Send data 

Send instructions 
Clear display 

Send data 

Send instructions 
Return Cursor to Home Position 

Send data 

LCD_white_space ; write ' ' characters (total number 
; is [W] ) 

; Send data 
:L0  movlw      20h ; ASCII for 'SDace' 

call SendS 
movlw 00000001b 

left 
call Sends 
bsf RSI 
return 

LCD clear 
bcf RSI 
movlw Olh 
call Sends 
bsf RSI 
return 

LCD home 
bcf RSI 
movlw 02h 
call Sends 
bsf RSI 
return 

movwf TmD 
bsf RSI 
movlw 20h 
call Send8 
decfsz Tmp, 
goto :L0 
return 

; "GotoXY" places the cursor at character specified in [W] register 
GotoXY 

iorlw      80h ; command to set DD RAM address 



bcf 
call 
bsf 
return 
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RSI 
Sends 
RSI 

;   Send  instructions 

;   Send data 

d8n"LrndS   81;\d?Ca   (ln  2   4"bit   nibbleS   °Ut   P0™  bits   6-3, Send8 movwf 
movwf 

bcf 
rrf 
movwf 
bcf 
bcf 
btf sc 
bsf 
bsf 
nop 
nop 

movf 
Send4 mcvwf 

bcf 
swapf 
rrf 
movwf 
bcf 
bcf 
btf sc 
bsf 
bsf 
nop 
nop 
bcf 

Tmp2+i 
Tmp2 

CLK 
Tmp2, W 
PORTS 
RW 
RS 
RSI 
RS 
CLK 

CLK 

Tmp2+i, W 
Tmp2 

CLK 
Tmp2, F 
Tmp2, W 
P0RT3 
RW 
RS 
RSI 
RS 
CLK 

Temporary storage 
Temporary storage 

place upper 4 bits of data in [w] 
Send upper 4 bits of data 

clock data into LCD 

Temporary storage 

place lower 4 bits of data in [w] 
Send lower 4 bits of data 

CLK clock data into LCD 

; Make PORT3.6 input to watch BUSY flaq 
bsf        RPO 
bsf 06h,6 
bcf        Rpo 

; Set/Reset bits for checking BUSY condition 

:L3 

bcf 
bsf 

bsf 
nop 
nop 
btfss 
goto 
bcf 
bsf 
bcf 

RS 
RW 

CLK 

PORTB, 
:L4 
CLK 
CLK 
CLK 

clock in upper 4 bits 

check for busy 
not busy 

still busy, so clock in lower 4 bits 
and discard 



goto :L3 
:L4   bcf CLK 

bsf CLK            ; clock in lower 4 bits and dis 
bcf CLK 

bcf RW 
; Return PORTB.6 to output function 

bsf RPO 
bcf 06h,6 
bcf RPO 
return 

; Delay 4.1 milliseconds (w/ 11.0592 MHz crystal) 
D41  movlw 15 

movwf CNT 
clrf CNT+1 

:L0  decfsz CNT+1, F 
goto :L0 
decfsz CNT, F 
goto :L0 
return 

,- Delay long time 
D4 10 

clrf CNT 
clrf CNT+1 

:L0  decfsz CNT+1, F 
goto :L0 
decfsz CNT, F 
goto :L0 
return 

; "Digit" ser ds one digit out to the display. 
Digit bsf RSI            ; Send data 

andlw OFh 
icrlw 30h 
call Sends 
return 

; "message" sends the standard data to LCD display 
message 

,-print "POS(d)= (+/-).xx" 
:Lla btfss ch_posd 

goto :L2a 
bcf ch_posd 
movlw 15 
call GotoXY 
clrf i 

:L1   movf i, W 
call LUT1 
movwf Tmpl           ; temporary storage 
sublw EOMchr 

58 
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btf sc Z 
goto :N1 
movf Tmpl, W 

call SendS 

incf i, F 

goto :L1 
Nl btf sc PosD,MSB 

goto :NEG 

movlw 1    1 

movf PosD,F 

btf ss Z 
movlw ' + ' 

call SendS 

movlw i   I 

call SendB 

movf PosD,W 

rnovwf CNT 
clrf CNT+1 

call to_dec8 

goto :Nla 

NSG mov 1 w t _ i 

call SendS 
movlw ■ . ■ 

call Send8 
movf PosD,W 

sublw 0 
rnovwf CNT 
clrf CNT-1 

call to_dec8 

Nla swapf Disp, W 
call Digit 
movf Disp, W 

call Digit 

;print BPOS=(+/-)-xx" 

L2a btf ss 

return 

ch_pos 

bcf ch_pos 
movlw 40h + 15 

call GotoXY 

clrf i 
L2 movf i, W 

call LUT2 
rnovwf Tmpl 

sublw EOMchr 

btfsc Z 
goto :N2 
movf Tmpl, W 

call SendS 

incf i, F 
goto :L2 

N2 btfsc Pos,MSB 

goto :NEG2 

;   temporary  storage 
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movlw i i 

movf Pos, F 
bcfss Z 
movlw ' + ' 

call Send8 
movlw i i 

call Send8 
movf Pos, W 
movwf CNT 
clrf CNT+1 
call to_dec8 
goto :N2a 

NEG2 movlw I _ I 

call Send8 
movlw I   1 

call Sends 
movf Pos.w 
sublw 0 
movwf CNT 
clrf CNT+1 
call to_decS 

N2a  swapf Disp, w 
call Digit 
movf Disp, W 
call Digit 
return 

END LCD Routines 

"tc_dec8" is 100's digits and below for 
single-byte counts in [CNT] only (but ensure [CNT+1]=0. 

[Tmp2+1:Tmp2] 

,- 100's digits and lower 
,- clear proper display location 

; Reg isters : [CNT+1:CNT], 

to de c8 
movlw OFOh 
andwf DisD+1 
clrf Disp 

:E2a movf CNT, W 
movwf Tmp2 
movf CNT+1, W 
movwf Tmp2+1 
movlw 64h 
subwf CNT, F 
btfsc C 
goto :E2b 
movlw 1 
subwf CNT+1, F 
btf ss C 
goto :E1 

:E2b incf Disp+1, F 
goto :E2a 

:E1 movf Tmp2, W 
movwf CNT 

save CODV for later restoration 

100's diait 

10's diait 

restore last value 
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:Ela movf CNT, W 
movwf Tmp2 
movlw 10 
subwf CNT, F 
btf ss C 
goto :E0 
movlw 10h 
addwf Disp, F 
goto :Ela 

:E0 movf Tmp2, W 
addwf Disp, F 
return 

save copy for later restoration 

10's digit 

1's digit 

restore last value 

Serial Communications routines 
  -  XMIT Subroutine    
This subroutine transmits one byte of data in ComReg register at 9600 

bps . 
;The transmit line is FORTE, bit 1 

:X0 

bcf 
movf 
movwf 
clrf 
movlw 
movwf 
bcf 
btf ss 
bcf 
btfsc 
bsf 
call 
rrf 
decfsz 
goto 
bsf 
.-call 
call 
movf 
movwf 
bsf 
return 

TXF 
INTCON.W 
Tmplnt 
INTCON 
9 
ComCnt 
C 
C 
TX 
C 
TX 
Delay 
ComReg, F 
ComCnt 
:X0 
TX 
D41 
Delay 
Tmplnt,w 
INTCON 
TXF 

;byte not transmitter yet 
;store enterino value of INTCON 

;temporarily disable all interrupts 
;start bit + 8 data bits coming 

;start bit in carry 
,-test carrv data 

.-delay for 1/9600 s 
;shift in next bit of data 

,-send stop bit 

,-delay for 1/9600 s 

;restore interrupt values 
;indicate valid transmission of byte 

. XMITtoPC Subroutine  
,-This subroutine transmits one byte of data in ComReg register at 9600 

bps. 
,-The transmit line is PORTB, bit 1 

XMITtoPC 
bcf 
movf 
movwf 

TXF 
INTCON,W 
Tmplnt 

;byte not transmitted yet 
;store entering value of INTCON 
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:X0 

clrf 
movlw 
movwf 
bcf 
bcfss 
bcf 
btfsc 
bsf 
call 
rrf 
decfsz 
goto 
bsf 
call 
movf 
movwf 
bsf 
return 

INTCON 
9 
ComCnt 
C 
C 
TX1 
C 
TX1 
Delay 
ComReg,F 
ComCnt 
:X0 
TX1 
Delay 
Tmplnt,w 
INTCON 
TXF 

;temporarily disable all interrupts 
.•start bit + 8 data bits coming 

; start bit in carry 
,-test carry data 

.-delay for 1/9600 s 
;shift in next bit of data 

;send stop bit 
;delay for 1/9600 s 

;restore interrupt values 
; indicate valid transmission of byte 

; "CRCCalc" calc 
CRCCalc 

mcviw 
movwf 
clrf 

:L0   movf 
subiw 
btfsc 
cote 
movf 
addwf 
incf 
goto 

:L1  movf 
subiw 
movwf 
movwf 
incf 
movlw 
movwf 
return 

ulates CRC and adds it tc message 

Msg 
FSR 
CRC1 
0, W 
EOMchr 
Z 
:L1 
0, W 
CRC1, F 
FSR, F 
:L0 
CRC1.W 
0 
CRC1 
0 
FSR, F 
EOMchr 
0 

Address of "Msg" into W 
Load FSR with Command Eyte 
CRC check  holder 
Read command 
check for end-of-message byte 

ail bytes read, check if CRC is zero 
Read command 

next command bvte 

; "CRC" checks CRC at end of message 
CRC 

:L0 

movlw Msg 
movwf FSR 
clrf CRC1 
movf 0, W 
subiw EOMchr 
btfsc z 
goto :L1 
movf 0, w 
addwf CRC1, F 
incf FSR, F 

Address of "Msg" into W 
Load FSR with Command Byte 
CRC check holder 
Read command 
check for end-of-message byte 

all bytes read, check if CRC is zero 
Read command 
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:L1 
goto 
movf 
;btfss 
;goto 
;goto 
;goto 
return 

:L0 
CRC1, F 
2 
print_ok 
Send_Token 
PO 

next command byte 

CRC failed, ignore message 
CRC OK, continue processing 

Receive subroutine    
Receive one byte of data at 9600 bps and store it in ComReg register. 
This routine is called by the ISR when the INTF flag is set. 
Uses PORT B, bit 0 (interrupt pin) 

Receive 
bcf RCF 
movlw 8 
movwf ComCnt 
call HDelay 
btf sc RX 
goto RDone 

:R0  call Delay 
bsf portb, 7 
btf ss RX 
bcf C 
btf sc RX 
bsf C 
rrf ComReg 
bcf portb, 7 
decfsz ComCnt,F 
goto :R0 
call HDelay 
bsf RCF 

RDone bcf INTF 
;decfsz testcnt,F 
return 
bsf ch_pos 
movf ComReg,W 
movwf Pos 
call message 
goto loop 

,-delays are set for 9600 bai 

Delay movlw 45 
movwf DelCnt 

:D0  decfsz DelCnt 
goto :D0 

Hdelay 
movlw 45 
movwf DelCnt 

:Dl  decfsz DelCnt,F 
goto :D1 
return 

;byte not received yet 

:delay for half of time 
rcheck again for start bit 
;exit if not proper start bit 
■delay until midpoint of next bit 

;delay until start of stop bit 
: indicate valid reception of byte 
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print _0K 
nop 
call LCD_clea 
clrf i 

:L2 movf i, W 
call LUT3 
movwf Tmpl 
sublw EOMchr 
btfsc Z 
goto loop 
movf Tmpl, W 
call SendS 
incf i, F 
goto :L2 

disp_ message 
nop 
btf ss first 
return 
call LCD_clea 
movlw Msg 
movwf FSR 

:L2 movf 0, W 
sublw EOMchr 
btfsc Z 
goto loop 
movf 0, W 
movwf CNT 
clrf CNT- 1 
call to_dec8 
swapf Disp, W 
call Digit 
movf Disp, W 
call Digit 
movlw I   r 

call SendS 
incf FSR, F 
aoto :L2 

temporary storage 
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Appendix A5 

Node 3 Source Code 

The following code is the actual machine language code that is programmed into 
node 3 of the network, the node responsible for monitoring camera output and 
communicatine this information with the motor-controlling node. 

"NODE3.SRC" 

DEVICE  FIC16C74,HS OSC.WDT OFF.PWRT OFF,PROTECT OFF 

;Re: .sters 

ORG 2 Oh 
Trr.pW DS i 

TmpSTAT DS 1 
Tmplnt DS 1 

J. 

CRC1 DS 1 
ComStat DS 1 
ComReg DS 1 
ComCr.r DS 1 
DelCnt DS 1 
CNT DS 2 
ADDR DS 2 
?OS DS 1 
Vel DS 1 
RowCnt DS 1 
lent DS 1 
Msg DS 1 

,-Numeric constants 
F = 1 
LSB = 0 
MSB = 7 
Row = 140 
;RCF = ComStat 0 
TXF = Comstat 1 
CRCErr = ComStat 2 
DTS = ComStat 3 
SIP = ComStat 4 
EOMchr = i   r 

INTVEC = 11001000b 
RTCC = TMR0 
RTIF = T0IF 

,-Pin assi gnments 

End-of-message character 
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Horiz equ PORTB.0 
Verc equ PORTE.4 
CompOut equ PORTE.1 
RCF equ PORTB.2 

ORG OOh 
goto START 

ORG 04h 
ISR  movwf TmpW 

swapf STATUS,W 
movwf TmpSTAT 

btfsc RBIF 
call Vertlnt 
bcfsc INTF 
call Horlnt 
bcfsc RCIF 
call RCInt 

ENDISR 

swapf TmpSTAT,W 
movwf STATUS 
swapf TmpW,F 
swapf TmpW,W 
reefie 

RCInt ;btfsc FERR 
,-goto Send_Token 
;gotC loop 
;bcfsc OERR 
,-goto Send_Token 
,-gctc loop 
movf RCREG,W 

register 
movwf 0 
sublw EOMchr 
btfsc Z 
bsf RCF 
incf FSR, F 
movf 0, W 
;movlw 10101010b 
;movwf PORTD 
return 

Horlnt 

bef INTF 
decfsz RowCnt 
return 
bsf RP0 
movlw 01000001b 
movwf OPTION 
bef RP0 
movf Pos, W 

Test rar framina erro: 

Test for overrun errc: 

Recover data bvte and sto: it ir. a 

Clear interrupt flag. 
If not desired interrupt, go back 
and wait for next row. 

;Change prescaler to WDT ;1:4 on RTCC. 

,-Age position variable 
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movwr Pos + 1 
clrf RTCC 

:H1  btfsc CompOut 
goto :K2 
movf RTCC,W 
sublw 70 
btfsc C 
goto :H1 
movf Pos+1,W 
movwf Pos 
goto :H3 

:H2   movf RTCCW 
bsf PORTE.7 
movwf Pos 
movlw 35 
subwf Pos, F 
comf Pos, F 
incf Pos, F 

:H3   movlw 01000100b 
bsf RPO 
movwf OPTION 
bcf RPO 
bcf INTE 
return 

VertInt 

movlw 96 
movwf RTCC 
bcf RTIF 
bcf PORTS.7 

:V1    btfSC RTIF 
goto :V1 
bsf INTE 
bsf RPO 
mov 1 w 01000001b 
movwf OPTION 
bcf RPO 
bcf RBIF 
bcf INTF 
return 

; TART 

clrf INTCON 
bsf RPO 
movlw 01000100b 
movwf OPTION 
movlw 01110011b 
movwf TRISB 
movlw 00h 
clrf TRISA 
movlw 10000000b 
movwf TRISC 
clrf TRISD 
clrf TRISE 

;to use to find velocity. 

;Test the comparator output 

;ball not found 

;use last value of position for ball 

;Move the value of the timer into a 

register for storing the Dosition. 

; Change prescaler back to 1:32 

■Disable horizontal interrupt 

Wait for 5089-50S2 clock pulses 

;Enable horizontal interruDt. 

Clear interrupt flag. 
Clear flag from unwanted hor. syncs 
Return and wait for the hor. syncs 

Interrupt on rising edge of RB.0 
and set prescaler to 1:32 on RTCC. 
Use pins RB.0,1,4 as input 
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movlw 00100000b 
movwf PIE1 
bcf RP0 
call RS232 
movlw 10101010b 
movwf PORTD 
clrf Pos 
clrf Vel 
movlw Row 
movwf RowCnt 
movlw 3 
movwf ADDR 
bsf CREN 

,-Set initial position to zero 
;Set initial velocity to zero 

PreoO 
movlw Msg 
movwf FSR 
movlw INTVEC 
movwf INTCON 
bcf RCF 
,-goto Send_ _Token 

MAIN movf RowCnt,F 
nop 
btf sc Z 
nop 
call VELCALC 
btf ss RCF 
goto MAIN 

;Begin prcessing message 
Process 

,-goto loop 
mcvlw Msg 
movwf FSR 
movf 0,W 
btf sc Z 
goto New_lnfc 
call CRC 
btfss Z 
goto loop 
movlw Msg 
movwf FSR 
movf ADDR,W 
btfsc z 
movf o,w 
movwf ADDR 
movf 0,W 
subwf ADDR,W 
btfss Z 
;goto loop 
goto Retrans 
,-goto CRC 

P0   incf FSR, F 

If position was just found u.e.- 
right row was just completed 
and therefore RowCnt is now zero) 
update the velocity of the 
ball. 

move address of 
read address 
token received 
check to see if data 

st bvte tc 

to be 

check to see if node is addressable 
first byte is defining address 

message not for this node 
check CRC 
move next byte into FSR register 
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movr 
movwf 

0, W 
ADDR+l ;move address of sending byte into 

;ADDR+l register 

; Exec ute instruction specified by messaqe 
Command 

incf FSR, F 
movf 0, w 
addwf PCL 

CmdO goto New_Info 
Cmdl goto New_Info 
Cnd2 goto New_Info 
Cmd3 goto New_Info       ,-reserv 
Cmd4 goto New_Info 
Cmd5 goto New Info 
Cmd6 goto New Info 
Cmd7 goto New Info 
Cmd8 goto New Info 
CmdS goto New Info 
CmdA goto New Info 
CmdE goto New Info 
CmdC goto New Info 
CmdD goto New Info 
Crn^ " goto New Info 
CmdF goto New Info 

(none should come! 

;Check to see if node has data to be sent; if so, send that data.  If 
not, pass token 
New_lnfo 

movf Msg.w 

btfsc DTS            ,-does new data need to be sent? 
goto Update 
goto Send Token 

;Update the linear posi 
Update 

bcf DTS 
movlw Msg 
movwf FSR 
movlw 4 
movwf 0 
incf FSR, F 
movlw 3 
movwf 0 
incf FSR, F 
movlw 1 
movwf 0 
incf FSR, F 
movf Pos, W 
movwf 0 
incf FSR,F 
movf Vel,W 
movwf 0 
incf FSR,F 

ion and velocity of the ball 
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movlw EOMchr 
movwf 0 
call CRCCalc 
aoco Retrans 

,-Transmit  token to next  node  in sequence 
Send_Token 

clrf Msg 
movlw      EOMchr 
movwf      Msg+1 
goto       Retrans 

,-Transmit data in Msg+n to Node 3 until End of Message byte is reached 
Retrans 

goto       Send 
,-goto      PrepO 

,- "CRCCalc" calculates CRC and adds it to message 
CRCCalc 

movlw Msg 
mcvwf FSR 
clrf CRC1 

:L0 movf 0, w 
subiw EOMchr 
btfsc Z 
goto :L1 
movf 0, W 
addwf CRC1, F 
incf FSR, F 
goto :L0 

. T_,1 movf CRC1.W 
sublw 0 
movwf CRC1 
movwf 0 
incf FSR, F 
movlw EOMchr 
movwf 0 
return 

; " CR C" checks CRC at end of messac 
CRC mcvlw Msg 

movwf FSR 
clrf CRC1 

:L0 movf 0, w 
sublw EOMchr 
btfsc Z 
goto :L1 ' 
movf 0, W • 
addwf CRC1, F 
incf FSR, F 
goto :L0 * 

:L1 movf 
return 

CRC1, F 

Address cf "Msg" inte W 
Load FSR with Command Byte 
CRC check holder 
Read command 
check fcr end-of-message byte 

all bytes read, check if CRC is zer; 
Read command 

next command byte 

Address cf "Msg" inte W 
Load FSR with Command Byte 
CRC check holder 
Read command 
check for end-of-message byte 

all bytes read, check if CRC is zero 
Read command 

next command byte 
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; "Send" retransmits  back command string for checking or passing on to 
next machine 

;store entering value of INTCON Send movf 
movwf 
clrf 
bsf 
movlw 
movwf 

SO   movf 
movwf 
bcf 
bsf 
bsf 
bcf 

:X0  btfss 
goto 

XMIT movf 
movwf 
movf 
sublw 
btf sc 
goto 

:S0a  incf 
goto 

:S1   bsf 
:Sla  btfss 

goto 
bcf 
bcf 
bsf 
movf 
movwf 
aoto 

INTCON,W 
Tmplnt 
INTCON 
SIP 
Msg 
FSR 
0, w 
ComReg 
CREN 
RPO 
TXEN 
RPO 
TXIF 
:X0 
ComReg,w 
TXRE3 
0, W 
EOMchr 
2 
:Si 
FSR, F 
SO 
R?0 
TRMT 
:Sla 
T>:EN 

RPO 
CREN 
Tmplnt,W 
INTCON 
PreDO 

Address of "Msg" into W 
Load FSR with Command Byte 
Read command 

,-Disable reception 

,-Wait until transmit buffer is clear 

Read command 
check for end-of-messaae cvz-: 

increment FSR realster 

;restore interrupt values 

RS2 3 2 bsf 
movlw 
movwf 
movlw 
movwf 
bcf 
movlw 
movwf 
return 

RPO 
00100000b 
TXSTA 
32 
SPBRG 
RPO 
10000000b 
RCSTA 

:Setup transmit 

:9600 baud using 20 MHz crystal 

: Enable asynchronous serial port 

. DELAY subroutine  
:delays are set for 9600 baud using 20 MHz crystal 

Delay movlw 
movwf 

82 
DelCnt 
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:D0 decfsz DelCnt 

goto :D0 
Hdelc 2y 

movlw 82 
movwf DelCnt 

:D1 decfsz DelCnt,F 

goto :D1 
return 

loop clrf INTCON 

movf Msg+1,W 

addlw 32 
movwf PORTD 

movlw 51 
movwf lent 

:11 call D410 

decfsz lent 

goto :11 
;bsf CREN 

aotc lOOD 

Delav 4.1 milliseconds (w/ 11.0592 MHz crystal) 
D4 1 movlw 15 

movwf CNT 
clrf CNT+1 

:L0 decfsz CNTV1 

goto :L0 
decfsz CNT, 

goto :L0 
return 

; De] .av lona ti me 
D4 10 

clrf CNT 
clrf CNT-1 

:L0 decfsz CNT^l 
goto :L0 
decfsz CNT, 

goto :L0 

VELCALC 
movf Pos + 1,W 
subwf Pos, W 
movwf Vel 
movlw Row 
nop 
movwf RowCnt 
movf Pos, W 

movwf PORTD 

bsf DTS 
return 

Subtract the old position from new 
and store the result in 
the Vel register. 
Get the correct row back in the 
RowCnt register in preparation for 
next vertical sync. 
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Appendix A6 

Node 4 Source Code 

The following code is the actual machine language code that is programmed into 
node 4 of the network, the node responsible for controlling the motor which turms the 
beam. 

"NODE4.SRC" 

DEVICE  PIC16C74.HS OSC.WDT OFF.PWRT OFF,PROTECT OFF 

ORG 20h 
EECONTROL DS 1 
EEADDR DS 1 
EEDATAK DS 1 
EEDATAL DS 1 

EEOP DS 1 
EECNT DS 1 
TmpW DS 1 
TmpSTAT DS 1 
K DS 5 
Tmp DS 3 
Tmpl DS 1 
DelCnc DS 1 
ACB DS 3 
ACC DS 1 
ComStat DS 1 
ComReq DS 1 
ADDR DS 2 
PosE DS 2 
PosD DS 1 
Pos. DS 1 
PosOld DS 1 
Vel DS 1 
Ang DS 1 
AngVel DS 1 
KX1 DS 2 
KX2 DS 2 
KX3 DS 2 
KX4 DS 2 
KX DS 2 
SIGN DS 1 
CRC1 DS 1 
CNT DS 2 
i DS 1 
Eint DS 2 
TmpInt DS 1 
Msg DS 1 



74 

,-Numeric constants 

F 

LSB 

MSB 

RCF 

TXF 

CRCErr 

DTS 

SIP 
EOMchr 

,-Pin assignments 

,-Shaft encoder related pins 

Aout      equ    PORTE.0 

Eout       ecu     PORTE.5 

1 

0 

7 

ComStat.0 

Comstat.1 

ComStat.2 

ComStat. 3 

ComStat.4 

;(input) 

;(incut) 

,-Motor controller-related pins 

Phase     eau    PORTE. 1       ,- (cutout! 

,-EEPRCM-related pins 
CS equ PORTA.C 
CLK equ FORTA.l 
DI equ PORTA.2 

DO ecru PORTA.3 

;(Output) 

(cutput) 

(output) 

(incut) 

ORG 0 0h 

goto START 

ORG 04h 
ISR  movwf TmpW 

swaDi STATUS,W 
movwf TmpSTAT 

btfss RCIF 

call RCINT 

btf sc INTF 

call PosUcdate 

btf sc TOIF 

call VelUcdate 

ENDISR 

swapf TmpSTAT,W 

movwf STATUS 

swapf TmpW,F 

swapf TmpW,W 

retfie 

RCINT 

btfsc FERR 

aotc Send Token 

btfsc OERR 

aoto Send Token 

;Save contents of W register 

;Save contents of STATUS register 

;Test receive interrupt flag 

;Check for source of interrupt and 

rgc to the appropriate rcutine 

rPut contents of STATUS register 

: Put contents of W register back 

;Test for framing error 

;Test for overrun error 
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movf RCREG,W 

movwf 0 
sublw EOMchr 

btfsc Z 
bsf RCF 
incf FSR,F 

movf 0,W 
return 

;Recover data byte and store it 

.   "PosUpdate"    

PosUpdate 
This part of the interrupt service routine is called when pin Aout 
alone changes value in a positive direcion.  It determines which way 
the track moved and updates the position vectors associated with the 
track, Ang and Ang+1, accordingly. 

bcf INTF 

btf ss Bout 
goto ADDPos 

goto S'JSPos 

ADDPos 

incf Ang, F 

;btfsc Z 
,- incf Ang+1, F 
movf Ang, W 
movwf PORTD 

return 

SU3Pos 
movlw 1 
subwf Ang, F 

;btfss C 
;decf Ang+1,F 
movf Ang, W 
movwf PORTD 
return 

Clear the interrupt flag 
Determine the direction that the 
motor moved bv Dollina ein 3 

;   - - - "VelUpdate"   
VelUpdate 
When 50,000 instructions have passed (approximately 10 ms), 
this part of the interrupt service is called.  It determines 
the velocity of the motor by subtracting from the 
most recent position of the motor the last saved position. 

bcf T0IF 
movf Pos01d,W 

subwf Ang, W 

movwf AngVel 
; movf Ang+1,W 

btf ss C 
;decf Ang+1,W 
;movwf AngVel+1 

,-Clear the interrupt flag 

,-Subtract old position from new 
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; movf Pos01d+1 W 
; subwf AngVel+1 F 
movf Ang, W 

movwf PosOld 
; movf Ang+1,W 
,-movwf Pos01d+1 
movf AngVel,W 

movwf PORTD 

return 

■Put contents of position registers 
into old position registers 

Start of Main Code Space 

START movlw Msa 
movwf FSR 
bsf RPO 
mcvlw 01000011b 
mcvwf OPTION 

clrf INTCON 
movlw 00001000b 
mcvwf TRISA 
movlw 00100001b 
movwf TRISE 
movlw 10000000b 
movwf TRISC 
mcvlw 0 
movwf TRISD 
movlw 0 
movwf TRISE 
movlw 00100000b 
movwf PIE1 

bcf RPO 
movlw 01010101b 
movwf PORTS 

bcf RPO 
movlw 00000100b 
movwf T2CON 

bsf RPO 
movlw OFFh 
movwf PR2 
bcf RPO 
;movlw 5 
,- movwf DrvCnt 
movlw OOOOllOOb 
movwf CCP1CON 
movlw 200 
movwf CCPR1L 
call RS232 
clrf PosD 

:Eankl 
ilnterruct on low tc hi or. iransitions 

■Prescaler = 1, TMR2 is on 

PWM Frequency = 19.53 kHz 

PWM mode, 8-bit resolution 

;Set UD PIC16C74 for serial comm 
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clrf Pos 
clrf Vel 
clrf Ang 
clrf AngVel 
clrf Eine 
clrf Einc+1 
movlw 4 
movwf ADDR 
bsf CREN 

PrepC movlw Msg 
movwf FSR 

Prepl movlw 11110000b 
movwf INTCON 
bcf RCF 
movlw 5 
movwf i 

MAIN movf PosD,W 
movwf PosE 
movf Pos, w 
subwf PosE,w 

bcf ss POSE,MSB 
goto : Inc 

:Dec movlw 1 
subwf Eine,F 
bcf ss C 
decf Einc+1,F 
movf Einc+1,W 
sublw 128 
bcfss Z 
goco :Conc 
movlw 129 
movwf Einc+1 
goco : Cone 

: Inc incf Eine,F 
bcf sc Z 
incf Einc+1,F 
movf Einc+1,W 
sublw 128 
bcfss 2 
goco :Conc 
movlw 255 
movwf Eine 
movlw 127 
movwf Einc+1 
,-goco Send_Token 
;goco MAIN 

Cont 

1/64*(163.84*K1) *(100*Pos) 
movf K+l, W 
movwf ACC 
movf Pos, W 

(GIE,PIE,RBIE,T0IE) 

POSD Dcs 
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movwf       ACB 

call       Mult 

bcf        C 

rrf ACB+1,F 

rrf ACB,F 

bcf        C 

rrf ACB+1,F 

rrf ACB,F 

bcf C 

rrf ACB+1,F 

rrf ACB.F 
bcf c 
rrf ACB+l.F 
rrf ACB.F 
bcf c 
rrf ACB+l.F 

rrf ACB.F 

bcf c 
rrf ACBfl.F 
rrf ACB.F 
movf ACB,W 

movwf KX1 

movf ACB-l.W 

movwf KX1+1 

;16*(128-K2)*Vel 

movf K+2.W 

movwf ACC 

movf Vel.W 

movwf ACB 

call Mule 
bcf c 

rlf ACB,F 

rlf ACB+l.F 
movf ACB.W 
movwf KX2 

movf ACE+l.W 
movwf KX2 + 1 

1/32-(51.473*K3) *(15 9.15*Ana) 
movr K+3.W 
movwf ACC 
movf Ana, W 
movwf ACB 
call Mule 
bcf C 
rrf ACB + 1 
rrf ACB, F 
bcf C 
rrf ACB + 1 
rrf ACB, F 
bcf C 
rrf ACB + 1 
rrf ACB, F 

mpNfpniFfcm 
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bcf C 
rrf ACE+1,F 

rrf ACB, F 

bcf C 
rrf ACB+1,F 

rrf ACB,F 

movf ACB,W 

movwf KX3 
movf ACB+1 
movwf KX3 + 1 

1* (160.854* K4) * (1.5915*AngVel) 

movf K + 4.W 

movwf ACC 
movf AngVel.W 

movwf ACB 
call Mule 
movf ACB,W 
movwf KX4 
movf AC3+1.W 

movwf KX4-1 

Add KX1 and KX2 (result in KX2) 
movf KX1.W 
addwf KX2,F 
bcf sc C 
incf KX2+1,F 
movf KX1+1.W 
addwf KX2 * 1, F 

Add KX3 and KX4 (resulc in KX4) 
movf KX3,W 
addwf KX4,F 

bcf sc C 
incf KX4+1,F 
movf KX3+1.W 
addwf KX4+1,F 

,-Add KX1, KX2, KX3, and KX4 (resulc in KX4; 
movf KX2,W 
addwf KX4.F 

btf sc C 
incf KX4 + 1 F 
movf KX2 + 1 W 
addwf KX4+1 F 

;Take negacive of answer 

comf       KX4,F 

comf       KX4+1.F 

incf       KX4,F 

befss      Z 

incf       KX4+1,F 



Add answer to Eine  (result 
movf Eint,W 
addwf KX4 
btfsc C 
incf Eint+1,F 
movf Eint+1,W 
addwf KX4 + 1 
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in  KX4) 

;CHECK FOR BAD ADDITION 

movlw KX4 + 1 
movwf CCPR1L 

btfss RCF 
goto MAIN 

;Begin processing messag« 
Process 

movlw Msa 
movwf FSR 
movf 0, W 
btf sc Z 
goto New in: 
call CRC 
btfss Z 
goto lOOD 
movlw Msc 
movwf FSR 
movf ADDR,W 
btfsc Z 
movf o,w 
movwf ADDR 
mcvf o,w 
subwf ADDR,W 
btfss Z 
goto Retrans 
,-call CRC 
inc: FSR,F 
movf 0, w 
movwf ADDR+1 

move aaaress oi 
read address 
token received 
check tc see if 

rirst bvte t; PC; 

cata needs tc be 

:check to see if node is addressable 
first byte is defining address 

,-message not for this ncde 
; check CRC 
;move next byte into FSR recister 

;move address of sending byte into 
;ADDR+l realster 

/Execute instruction specified by message 
Command 

incf FSR, F 
movf 0, W 
addwf PCL 

CmdO return 
Cmdl goto Cha Pos 
Cnd2 goto Chg PosD 
Cmd3 goto Cha Gains 
Cmd4 goto New info 
CmdS goto New info 
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Cmd6 goto New_Info 
Cmd7 goto New_Info 
Cmd8 goto New_Info 
Cmd9 goto New_Info 
CmdA goto New_Info 
CmdB goto New_Info 
CmdC goto New_lnfo 
CmdD goto New_Info 
CmdE goto New_Info 
CmdF goto New_Info 

Chg_Pos 

movf Msg+3,W 
movwf Pos 
movf Msg+4 
movwf Vel 
goto New_lnfo 

Chg_P osD 
movf Msg+3,w 
movwf PosD 
goto New Info 

Chg_G a ins 

movf Msg+3,W 
movwf K+l 
movf Msg+4 
movwf ■ K+2 
movf Msg+5,W 
movwf K+3 
movf Msg + 6 
movwf K+4 
movf Msg+7,w 
movwf K 
goto New info 

;Check to see if node has data to be sent; if so, send that data.  If 
not, pass token 
New_lnfo 

movf Msg,W 
btfsc DTS           ;does new data need to be sent? 
goto Update 
goto Send Token 

Update 
nop 
goto Send Token 

/Transmit token to next node in sequence 
Send_Token 

clrf       Msg 
movlw      EOMchr 
movwf      Msg+1 
goto       Retrans 
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/Transmit data in Msg+n to Node 3 until End of Messaae byte is reached 
Retrans 

aoto Send 

:L0 

: LI 

FSR,F 

EOMch: 
0 

; "CRCCalc" calculates CRC and adds it to messaqe 
CRCCalc 

Msg 
FSR 
CRC1 
0, w 
EOMchr 
Z 
:L1 
0, W 
CRC1, F 
FSR, F 
:L0 
CRC1.W 
0 
CRC1 
0 

movlw 
movwf 
clrf 
movf 
sublw 
btfsc 
goto 
movf 
addwf 
incf 
goto 
movf 
sublw 
rr.ovwf 
mcvwf 
incf 
movlw 
movwf 
return 

Address of "Msg" into W 
Load FSR with Command Byte 
CRC check holder 
Read command 

check for end-of-message byte 

all bytes read, check if CRC is zero 
Read command 

next command by: 

CRC 

:L0 

:RC" checks CRC at end of messace 

:L1 

movlw 
mcvwf 
clrf 
movf 
sublw 
btfsc 
gcto 
movf 
addwf 
incf 
goto 
movf 
return 

Msg 
FSR 
CRC1 
0, W 
EOMchr 
Z 
: LI 
0, W 
CRC1, F 
FSR, F 
:L0 
CRC1, F 

Address of "Msg" into W 
Load FSR with Command Eyte 
CRC check holder 
Read command 
check for end-of-message byte 

all bytes read, check if CRC is zerc 
Read command 

next command byte 

CRC OK, continue processina 

or passing on to ; "Send" retransmits back command strina for checkinc 
next machine 

Send  movf        INTCON,W        ;store entering value of INTCON 
movwf      Tmplnt 
clrf        INTCON 

PUP mmm wwym 



bsf SIP 
movlw Msg 
movwf FSR 

so movf 0, W 
movwf ComReg 
bcf CREN 
bsf RPO 
bsf TXEN 
bcf RPO 

:XO bcf ss TXIF 
goto :X0 

XMIT movf ComReg,W 
movwf TXREG 
movf 0, W 
sublw EO.Mchr 
btf sc Z 
goto :Si 

:S0a incf FSR, F 
goto SO 

:S1 bsf RPO 
:Sla btf ss TRMT 

goto :SIa 
;bsf RPO 
bcf TXEN 
bcf RPO 
bsf CREN 
movf Tmplnt,W 
movwf INTCON 
goto PrepO 

RS232 bsf RPO 
movlw OOlOOOOOb 
movwf TXSTA 
movlw 32 
movwf SP3RG 
bcf RPO 
movlw lOOOOOOOb 
movwf RCSTA 
return 

Address of "Msg" into W 
Load FSR with Command Byte 
Read command 

;Disable receDtion 

Read command 
check for end-of-messaae bvte 

increment FSR 

■restore interruot values 

,-Setup transmit 

;9600 baud using 20 MHz crystal 

: Enable asynchronous serial port 

; DELAY subroutine  
/delays are set for 9600 baud using 20 MHz crystal 

Delay movlw 82 
movwf DelCnt 

:D0  decfsz DelCnt 
goto :D0 

Hdelay 
movlw 82 
movwf DelCnt 

:D1  decfsz DelCnt,F 
goto :D1 
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return 

Signed Multiplication routine: [ACB+1 ACB] = ACB * ACC 

Mult clrf SIGN 

clrf TMP 
clrf TMP+1 

clrf ACB + 1 

movlw OFFh 

btfsc ACB,MSB 

movwf ACE + 1 

movf ACC,W 

movwf TMP1 

call :NEG 

:M1 clrw 

btfsc ACC.O 

call :M2 
bcf C 
rrf ACC, F 
bcf C 
rlf ACE, F 
rlf ACE-1,F 
rr.ovf ACC, F 

btf ss Z 
goto : MI 
movf TMP1.W 

rr.ovwf ACC 
movf TMF-l.W 
movwf ACE-1 
movf TMP.W 

movwf ACE 
btfsc SIGN,0 

call :NEG0 
return 

:M2 movf ACE , W 
addwf TMP, F 

btfss C 
incf TMF+l.F 
movf ACE^l.W 
addwf TMP+1,F 
return 

:NEG btfsc ACC, 7 

goto :NEGI 
:NEGa btfss 

return 

ACB+1,7 

:NEG0 incf SIGN,F 
comf ACE, 1 
comf ACB+1,F 

incf ACB,F 

btfsc Z 
incf ACB-rl, F 
return 

:NEG1 incf SIGN,F 
comf ACCF 
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incf ACC,F 
goto :NEGa 

; Del ay 4.1 milliseconds ( 
D41 movlw 

movwf 
clrf 

15 
CNT 
CNT+1 

:L0 decfsz 
goto 
decfsz 
goto 
return 

CNT+1, 
:L0 
CNT, F 
:L0 

F 

; Del ay long time 
D410 

clrf 
clrf 

CNT 
CNT+1 

:L0 decfsz 
goto 
decfsz 
goto 
return 

CNT+1, 
:L0 
CNT, F 
:L0 

F 

w/ 11.0592 MHz crystal) 


